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Abstract

Semantic segmentation of 3D LiDAR point clouds is very important for applica-
tions like autonomous driving and digital twins of cities. However, current deep learning
models suffer from a significant generalization gap. Unsupervised Domain Adaptation
(UDA) methods have recently emerged to tackle this issue. While domain invariant fea-
ture learning using maximum mean discrepancy (MMD) has shown promise in image
domains due to its simplicity, its application remains unexplored in large-scale outdoor
point clouds. Moreover, previous methods don’t consider the class information, which
can lead to suboptimal adaptation performance. In response, we propose a new ap-
proach—Contrastive Maximum Mean Discrepancy (CMMD)— to maximize intra-class
domain alignment and minimize inter-class domain discrepancy. We integrate CMMD
into a 3D semantic segmentation model for LiDAR point clouds. The evaluation of our
method with large-scale UDA datasets shows that it surpasses several state-of-the-art
UDA approaches for 3D LiDAR point clouds while being competitive with the current
best-performing approach. CMMD is a promising UDA approach with strong potential
for point cloud semantic segmentation.

1 Introduction
Semantic segmentation of large-scale outdoor point clouds is a very important task for nu-
merous applications like autonomous driving and digital twins of cities. Although the perfor-
mance of supervised deep learning-based methods has increased in recent years, they require
large amounts of annotated data to train which is complex and expensive to obtain. This
prompted researchers to focus more on other avenues. One such avenue is transfer learning
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from synthetic datasets, for which labels are readily available. However, semantic segmen-
tation models have been shown to suffer from a significant generalization gap. This has been
demonstrated in some recent work [1, 5, 11]. These models are static as they are obtained
from a set of data present at the time of training and are unable to adapt to changes in the
data. These changes can be due to differences in LiDAR sensors that influence the density,
noise distribution, and geometry of the point clouds, geographical variations that affect the
appearance of a scene, and class variations that are more pronounced in urban point clouds.
Unsupervised Domain Adaptation (UDA) methods have emerged to bridge the generaliza-
tion gap. The majority of the proposed methods are targeted toward images [7, 8, 22] while
3D point clouds have not been sufficiently explored. This can be attributed to their sparsity,
irregularity, and larger data volume, which makes it challenging to apply existing techniques.
UDA approaches can be divided broadly into two categories: domain mapping and domain
invariant feature learning. Domain mapping approaches map the source point cloud to the
target point cloud using conditional generative adversarial networks (GANs) [14, 15, 32] or
data augmentation approaches [1, 16]. In this case, either 3D point clouds are used directly
as input data [16, 32] or projected images of LiDAR scans [1, 14, 15] are used instead.

Figure 1: Our proposed contrastive domain
alignment performs class-wise UDA across
domains by pulling together similar class dis-
tributions and pushing away dissimilar ones.
The resulting feature distributions are aligned
class-wise.

Domain invariant feature learning ap-
proaches propose to learn a shared feature
representation by minimizing a discrepancy
measure between source and target fea-
tures [25] or through adversarial training
[9, 11, 23]. Compared to adversarial train-
ing, discrepancy-based approaches are sim-
pler to train and integrate into existing mod-
els. Furthermore, since they explicitly mea-
sure domain discrepancy, they can provide
insights into the differences between the
source and target domains. Domain dis-
crepancy can be measured by Maximum
Mean Discrepancy (MMD) [10], which
has been extensively used to obtain domain-
invariant features for images. However, this
line of work hasn’t been explored for 3D point clouds. Moreover, most of the existing UDA
methods for point clouds consider the domain discrepancy at the domain level independent of
the class information, even though samples from two domains should be aligned according to
their semantic labels to ensure the discriminability of the features. In this paper, we propose
a new contrastive MMD (CMMD), which can perform class-wise domain alignment (Figure
1). Inspired by the N-pair contrastive loss [18], our CMMD performs contrastive learning
on probability distributions using the MMD as a similarity metric. Since this approach re-
quires target domain labels, we adopt confidence-based filtering and entropy minimization
to produce accurate pseudo-labels. Our method has been validated on the large-scale seg-
mentation benchmarks SynLiDAR [26] (source dataset) and SemanticPOSS [12] (target
dataset). Our contributions are as follows : (1) We present an MMD-based UDA approach
for large-scale LiDAR point cloud semantic segmentation. (2) We propose a new contrastive
MMD to conduct UDA. (3) We present a class-wise alignment module for UDA designed
for LiDAR point cloud semantic segmentation.
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Figure 2: Class-wise UDA: Source and target point clouds are fed to a pre-trained model.
Then contrastive alignment is conducted on the task-specific layers from the decoder. En-
tropy minimization and confidence filtering are used to increase the accuracy of pseudo-
labels.

2 Unsupervised domain adaptation for point cloud
semantic segmentation

In recent years, several UDA techniques have been proposed that are based on deep neural
networks. The underlying assumption of UDA is that we have access to label-rich samples
in the source domain and label-scarce samples in the target domain. They can be gener-
ally grouped into domain mapping methods and domain-invariant feature learning methods.
Compared with image UDA, point clouds have not been sufficiently explored.
Domain mapping methods aim at transferring the appearance of the target data into the anno-
tated source data. Then, a model is trained and applied to the target domain. This is usually
done through GANs. Numerous works apply existing GANs to projected images of the Li-
DAR points. For example, CycleGAN [33] can be used for translating real Bird-Eye-View
(BEV) into synthetic BEVs obtained from synthetic point clouds [14, 15]. Zhao et al. [32]
use a sensor-view image instead of a BEV. Then a GAN is used to simulate LiDAR dropout
noise on real data and is applied to the synthetic data. Other lines of work attempt to conduct
non-adversarial domain mapping. For example, Alonso et al. [1] use local augmentation
operations to achieve alignment on the input space while minimizing the Kullback Leibler
divergence between the source and target label distributions. Xiao et al. [26] decompose
the synthetic-to-real gap into an appearance component and a sparsity component and use
a 3D GAN to align the synthetic and real feature distribution at the input level and feature
level. Recently, Yi et al. [28] propose an approach where UDA is formulated as a 3D surface
completion task to transfer knowledge between different LiDAR sensors.
Domain-invariant feature learning methods aim at learning a feature representation that is
shared between the source and target domains. Hence, if the model performs well on the
source domain using this shared representation, then it will generalize well to the target do-
main. One way to achieve this is by minimizing a discrepancy measure between the source
and target features. Wu et al. [25] use the geodesic distance between the output distribu-
tions of source and target, while updating batch normalization statistics based on the target
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domain. They rely on the squeezeSeg network [24] that performs a spherical projection of
the 3D point clouds to obtain a projected image which can result in a loss of geometric in-
formation. MMD [6] is another popular discrepancy used to measure the distance between
two probability distributions. By minimizing the MMD between source and target features,
we can obtain domain invariant features. This has been used in [10, 30] for image classi-
fication by minimizing the MMD in the last layers of a convolutional neural network. Yan
et al. [27] further introduce class weights to account for class weight bias in domain adap-
tation. For image semantic segmentation, Erkent and Laugier [4] adapt to varying weather
using the MMD between source and target encoder features. The MMD has been applied in
the context of point cloud classification of CAD objects to learn domain-invariant features
both locally and globally [13]. However, works applying the MMD to 3D semantic segmen-
tation of large-scale point clouds are lacking which can be attributed to the computational
cost of these massive datasets. Another way to achieve domain invariant features is through
adversarial training, either using projected LiDAR scans [9, 23] or 3D points clouds [11].
Domain invariant feature learning methods are based on a strongly developed theory and
thus have better theoretical guarantees for learning from different domains [2]. Furthermore,
since they operate in the feature space or the output space, they are by design related to
the target segmentation task and can be combined with various deep learning architectures.
Domain mapping approaches can be more challenging to train and are more susceptible
to mapping distortions, which makes them less suitable for 3D point clouds. On the other
hand, while the above-mentioned methods reduce the generalization gap of 3D semantic seg-
mentation models, they conduct marginal feature alignment and don’t consider the semantic
information which has been shown crucial for domain adaptation of semantic segmentation
tasks [31]. Some recent works begin addressing this problem. For example, Saltori et al. [16]
propose a semantic mixing strategy combined with data augmentation to reduce the domain
shift. In our work, we propose class-conditioned domain alignment to address the domain
difference.

3 Proposed methodology
Our approach implements a UDA method for point cloud semantic segmentation that per-
forms class-wise domain alignment. We exploit the MMD as a distance metric for class
conditional feature distribution to bring closer distributions for the same classes regardless
of the domain. Formally, we consider a set of source domain samples S = {( f s

i ,y
s
i )}

ns
i=1 and

target domain samples T = {( f t
i ,y

t
i)}

nt
i=1, f s

i ∼ Ps are source features and f t
i ∼ Pt are target

features such as those obtained through a deep neural network. ys
i = {1,2, ...,K} are source

labels for K classes. ns and nt represent the number of the source and target features respec-
tively. We assume the target domain shares the same classes as the source domain and that
target labels yt

i are unknown. The goal of UDA is to train a model using the labeled source
data that generalizes well to the target data. Figure 2 shows our approach. The source and
target point clouds are fed to a 3D semantic segmentation network. The task-specific layers
from the decoder are used to conduct the contrastive alignment. Specifically, the distribu-
tion of class-wise features from source and target are embedded into a reproducing kernel
Hilbert space (RKHS) to obtain a kernel mean embedding per distribution. Then, using con-
trastive learning, the mean embeddings from the same class are pulled closer together using
the MMD while those from different classes are pushed apart. Since class-wise contrastive
alignment needs target labels, we use the network output for the target data as pseudo-labels.

Citation
Citation
{Wu, Wan, Yue, and Keutzer} 2017

Citation
Citation
{Gretton, Borgwardt, Rasch, Scholkopf, and Smola} 2008

Citation
Citation
{Long, Cao, Wang, and Jordan} 2015

Citation
Citation
{Zhang and Wu} 2020

Citation
Citation
{Yan, Ding, Li, Wang, Xu, and Zuo} 2017

Citation
Citation
{Erkent and Laugier} 2020

Citation
Citation
{Qin, You, Wang, Kuo, and Fu} 2019

Citation
Citation
{Jiang and Saripalli} 2020

Citation
Citation
{Wang, Ding, Li, Zhao, Roychowdhury, Wallin, Sapiro, and Qiu} 2019

Citation
Citation
{Luo, Khoshelham, Fang, and Chen} 2020

Citation
Citation
{Ben-David, Blitzer, Crammer, Kulesza, Pereira, and Vaughan} 2010

Citation
Citation
{Zhang, Qiu, Yao, Ngo, Liu, and Mei} 2020

Citation
Citation
{Saltori, Galasso, Fiameni, Sebe, Ricci, and Poiesi} 2022



EL MENDILI ET AL.: CONTRASTIVE MMD FOR 3D LIDAR SEMANTIC SEGMENTATION 5

Entropy minimization and confidence filtering are used to increase their accuracy.
In the rest of this section, we briefly review the concept of MMD as a distance metric for
probability distributions in section 3.1. Then we introduce a new contrastive domain align-
ment metric in section 3.2. Finally in section 3.3, we discuss the training procedure using
the proposed approach to conduct UDA for semantic segmentation of 3D point clouds.

3.1 Kernel mean embeddings of probability distributions
The empirical kernel mean embedding of the source and target feature distributions in the
RKHS induced by kernel k are the elements µs =

1
ns

∑
ns
i=1 k( f s

i , .) and µt =
1
nt

∑
nt
i=1 k( f t

i , .) re-
spectively. A useful property of the kernel mean embedding is that it captures all characteris-
tics of probability distributions for a good choice of kernel. When the kernel is characteristic
(like the RBF kernel), the mapping from probability distributions to kernel mean embed-
dings is injective and there is no information loss when mapping the distribution. Hence, the
kernel choice controls how much information about the distribution is retained.
When the kernel mean embedding is unique, it can be used to define a metric for probability
distributions. The maximum mean discrepancy is then defined as the distance between the
kernel mean embeddings and is 0 if and only if the probability distributions are the same.:

MMD(Ps,Pt) = ||µs −µt ||2H (1)

Using the kernel trick, the empirical estimate of the MMD is given by :

MMD(Ps,Pt) =
1
n2

s

ns

∑
i=1

ns

∑
j=1

k( f (xs
i ), f (xs

j))+
1
n2

t

nt

∑
i=1

nt

∑
j=1

k( f (xt
i), f (xt

j))

− 2
nsnt

ns

∑
i=1

nt

∑
j=1

k( f (xs
i ), f (xt

j))

(2)

3.2 Contrastive domain alignment
In contrastive learning, a contrastive loss aims to maximize the similarity between positive
pairs and minimize the similarity between negative pairs. This will encourage the model
to learn discriminative features that capture the underlying similarities within each domain
while emphasizing the differences. Furthermore, utilizing probability distributions can in-
corporate higher-level information about the data like their moments. Therefore, we seek
to apply this paradigm to feature distributions instead of feature instances. In order to learn
from distributions, kernel mean embeddings provide an efficient representation that also pre-
serves important information. In particular, a characteristic kernel enables a unique mapping
and thus no loss of information. We consider the class conditional feature distribution of
source and target Pc

s and Pc
t respectively. They can be embedded into kernel mean embed-

dings using a characteristic kernel. Let µc
s be the kernel mean embedding of the source

distribution of class c. We use µ
+
t and µ

−
t to denote positive and negative kernel mean em-

beddings, i.e. µc
s and µ

+
t are from the same class and µ

−
t is a different class. Based on this,

we can define an intra-class maximum mean discrepancy and an inter-class maximum mean
discrepancy. To conduct class-wise unsupervised domain adaptation, the intra-class distance
should be minimized while the inter-class distance should be maximized. This will make
samples from a class compact regardless of the domain while ensuring samples from differ-
ent classes have different distributions. Similar to metric learning, we would like to have a
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joint comparison among more than one negative kernel mean embedding. Inspired by the
multi-class N pair contrastive loss [18], we formalize our proposed method of class-wise do-
main alignment: consider the following kernel mean embeddings: {µc

s ,µ
+
t ,µ−

t1 , ...,µ
−
tK−1}

where {µ
−
t1 , ...,µ

−
tK−1} are negatives. The contrastive domain alignment loss is defined as

follows :

CMMD({µ
c
s ,µ

+
t ,µ−

t1 , ...,µ
−
tK−1}) = − log

exp−MMD(µc
s ,µ

+
t )

exp−MMD(µc
s ,µ

+
t )+∑

K−1
j exp−MMD(µc

s ,µ
−
t j )

(3)

The contrastive domain alignment loss learns to identify a positive kernel mean embedding
from multiple negative ones. It is worth noting that CMMD can be used for other interesting
use cases such as label denoising of noisy target annotations. Exploiting the source domain
knowledge can then help improve target domain labels.

3.3 Unsupervised Contrastive domain adaptation for semantic
segmentation

The contrastive domain alignment module requires target labels for optimization. To es-
timate these labels, we use the network’s predictions as pseudo-labels. Since the estima-
tion can be noisy, we employ two strategies to improve the estimation quality: We perform
confidence-based filtering on the estimated pseudo-labels. This will ensure that unconfident
classes are not contributing to the domain alignment. The filtering is performed according
to equation 4. pc

i is the softmax output containing the class probabilities of point i and β

is a confidence threshold to filter uncertain classes. We include entropy minimization [21]
on the target predictions to incorporate target points that weren’t included during domain
alignment. This technique is commonly used in semi-supervised learning and clustering and
is good for promoting the formation of compact clusters. Entropy minimization is performed
using the loss described in equation 5. fθ is the classifier layer of the model.

ŷ(c)i =

{
1, i f c = argmax pc

i , pc
i > β

0, otherwise
. (4)

Lent =− 1
nt

∑
nt

fθ (xt)log( fθ (xt)) (5)

Although deep neural networks are able to learn more transferable features, deep features
slowly transition from general to task-specific through the last layers of the network [29].
Therefore, the transferability gap becomes particularly large when transferring the higher
layers. In line with previous work based on the MMD for image classification [10], we
incorporate the domain alignment module over the activations of the last task-specific layer
before the classification head. As a result, the overall objective minimizes the contrastive do-
main alignment loss over the activations of the last task-specific layer, the cross-entropy loss
over the labeled source data, and the entropy loss over the unlabeled target data. Therefore,
the overall objective is:

L = λ1Lce +λ2CMMD+λ3Lent (6)

where Lce is the supervised cross-entropy loss and λ1, λ2 and λ3 are the weights of the
supervised loss, the CMMD objective, and the entropy loss respectively.
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4 Experiments

4.1 Datasets and baselines

To evaluate our method, we use the SynLiDAR dataset [26] as a source domain and Se-
manticPOSS as a real target domain [12]. SynLiDAR [26] is a large-scale synthetic dataset
produced with the Unreal Engine. SynLiDAR is composed of 13 sequences containing a total
of 198396 LiDAR frames annotated into 32 semantic classes. We randomly selected 19840
frames for training and 1976 for validation. SemanticPOSS [12] is a real-world dataset col-
lected using the Pandora sensor. It contains 5 sequences and 2988 frames classified into
14 semantic classes. Sequence 03 is used for validation and the remaining sequences for
training [12]. We follow Xiao et al. [26] in mapping SynLiDAR labels into 13 segmentation
classes for the purposes of UDA. The segmentation performance is evaluated using the per-
class Intersection over Union (IoU) and the mean Intersection over Union (mIoU) over all
semantic classes before and after UDA.
We compare our method with the following state-of-the-art UDA approaches that have been
applied to 3D LiDAR point clouds. ADDA [20] is based on adversarial learning, ST [34] and
Ent-Min [21] represent the self-training paradigm. These three methods belong to the do-
main invariant feature learning category. PCT [26] belongs to the domain mapping category.
Additionally, ST-PCT [26] is also included in the comparison which is a hybrid approach
involving both a domain mapping and feature alignment component. These approaches are
evaluated with respect to the same source model where the semantic segmentation network
is trained on the source dataset and evaluated on the target. This constitutes the before adap-
tation performance. Furthermore, we also compare our method with CoSMIX, the current
best-performing method for our dataset[16]. For a fair and realistic comparison, we report
their source model performance that is used as a starting point for adaptation.

4.2 Implementation details

We used the same point cloud semantic segmentation network as previous methods, namely
MinkUNet32 [3]. The network was pre-trained on the source domain to get the source model
in Table 1. To do so, we used mini-batch stochastic gradient descent (SGD) with a learning
rate of 0.01 and momentum of 0.9 for 50 epochs starting from randomly initialized weights.
We fixed the batch size to 4 and the voxel size to 0.05. The source model in Table 2 is
provided by CosMix [16] and was trained on the source domain for 10 epochs with Dice
loss [19] and a batch size of 12. For adaptation, we initialized the model weights using the
source model. We fixed λ1 = 2 , λ2 = 1 and λ3 = 0.001. We set the confidence threshold
for pseudo-label filtering to β = 0.85. SGD was used with a learning rate of 0.001 and a
momentum of 0.9. We fixed the batch size to 4 for both source and target and the voxel
size to 0.05. For adaptation, the network parameters were shared between the source and
target domain except for the batch normalization layers. For the CMMD kernel, we used
the Gaussian RBF kernel k(x,x′) = exp(−||x−x′||2

2σ2 ) which is characteristic. The bandwidth
parameter was chosen via the median heuristic: σ2 = median{||xi −xj||2}. The MMD was
computed using its unbiased estimate [6] which can be computed with linear complexity. At
each iteration, we chose the set of classes that were shared between both source and target
batches to compute CMMD. We also discarded any class for which the number of samples
in either source or target was less than 10 samples. This helped stabilize the training process.

Citation
Citation
{Xiao, Huang, Guan, Zhan, and Lu} 2021

Citation
Citation
{Pan, Gao, Mei, Geng, Li, and Zhao} 2020

Citation
Citation
{Xiao, Huang, Guan, Zhan, and Lu} 2021

Citation
Citation
{Pan, Gao, Mei, Geng, Li, and Zhao} 2020

Citation
Citation
{Pan, Gao, Mei, Geng, Li, and Zhao} 2020

Citation
Citation
{Xiao, Huang, Guan, Zhan, and Lu} 2021

Citation
Citation
{Tzeng, Hoffman, Saenko, and Darrell} 2017

Citation
Citation
{Zou, Yu, Liu, Kumar, and Wang} 2019

Citation
Citation
{Vu, Jain, Bucher, Cord, and PÃ©rez} 2019

Citation
Citation
{Xiao, Huang, Guan, Zhan, and Lu} 2021

Citation
Citation
{Xiao, Huang, Guan, Zhan, and Lu} 2021

Citation
Citation
{Saltori, Galasso, Fiameni, Sebe, Ricci, and Poiesi} 2022

Citation
Citation
{Choy, Gwak, and Savarese} 2019

Citation
Citation
{Saltori, Galasso, Fiameni, Sebe, Ricci, and Poiesi} 2022

Citation
Citation
{Sudre, Li, Vercauteren, Ourselin, and Jorgeprotect unhbox voidb@x protect penalty @M  {}Cardoso} 2017

Citation
Citation
{Gretton, Borgwardt, Rasch, Scholkopf, and Smola} 2008



8 EL MENDILI ET AL.: CONTRASTIVE MMD FOR 3D LIDAR SEMANTIC SEGMENTATION

Table 1: Adaptation results on SynLiDAR → SemanticPOSS. The source corresponds to
the model trained on the source dataset. Results are reported in terms of mean Intersection
over the Union (mIoU).

Model pers rider car trunk plants traf. pole garb. buil. cone. fence bike grou. mIoU
Source 3.7 25.1 12.0 10.8 53.4 0.0 19.4 12.9 49.1 3.1 20.3 0.0 59.6 20.7
ADDA [20] 27.5 35.1 18.8 12.4 53.4 2.8 27.0 12.2 64.7 1.3 6.3 6.8 55.3 24.9
Ent-Min [21] 24.2 32.2 21.4 18.9 61.0 2.5 36.3 8.3 56.7 3.1 5.3 4.8 57.1 25.5
ST [34] 23.5 31.8 22.0 18.9 63.2 1.9 41.6 13.5 58.2 1.0 9.1 6.8 60.3 27.1
PCT [26] 13.0 35.4 13.7 10.2 53.1 1.4 23.8 12.7 52.9 0.8 13.7 1.1 66.2 22.9
ST-PCT [26] 28.9 34.8 27.8 18.6 63.7 4.9 41.0 16.6 64.1 1.6 12.1 6.3 63.9 29.6
CMMD (Ours) 29.2 28.1 24.1 13.1 63.4 2.2 33.2 9.1 61.3 16.5 23.1 2.0 74.3 29.2

Table 2: Adaptation results on SynLiDAR → SemanticPOSS. The source corresponds to the
model provided by Saltori et al. [16]. Results are reported in terms of mean Intersection over
the Union (mIoU)
.

Model pers rider car trunk plants traf. pole garb. buil. cone. fence bike grou. mIoU
Source 46.4 39.4 35.4 15.6 67.3 3.5 37.5 29.1 61.1 17.4 27.1 6.9 79.3 35.9
CoSMix [16] 55.8 51.4 36.2 23.5 71.3 22.5 34.2 28.9 66.2 20.4 24.9 10.6 78.7 40.4
CMMD (Ours) 54.3 46.8 36.2 18.5 68.0 4.3 38.9 31.1 64.0 23.3 27.5 4.9 63.8 37.1

4.3 Results

Table 1 summarizes the performance before and after adaptation starting from the same pre-
trained model. As expected, the source-only performance is worse due to the domain gap.
CMMD improves over the baseline source model mIoU by 9.5%. We can observe that PCT
which is a domain mapping method performs worse than the domain invariant feature learn-
ing methods. This is expected as large-scale point clouds display both low-level and high-
level domain differences. We can also observe that CMMD performs better than adversarial
training and self-training-based methods in terms of mIoU. For some of the minority classes
such as fence, cone, and person, the performance increase is more significant (+11% IoU for
fence, +14.9% IoU for cone, and +0.3% IoU for person) . CMMD also attains a comparable
performance to ST-PCT, which is a mixed approach relying jointly on GANs for input-level
adaptation and self-training without the challenges of adversarial learning like instability and
mode collapse [17]. We also notice instances of negative transfer, which describes the case
when transferring knowledge from the source has a negative impact on the target perfor-
mance. All methods suffer from this problem for the minority classes cone and fence except
CMMD. This is important as the rare classes are more prone to poor generalization. For
the latter, this only occurs for the class garbage can. Table 2 shows the performance before
and after adaptation starting from the pre-trained model provided by Saltori et al. [16]. It is
worth noting that the source model’s performance already outperforms all the approaches in
Table 1. We are therefore already starting from a well-performing model. CMMD improves
the source model by 1.2% mIoU vs. 4.5% for CoSMix. Furthermore, CMMD reaches new
state-of-the-art performance for the minority classes fence, cone, garbage-can and car. Al-
though CoSMix has a better performance overall in terms of mIoU, we argue that CMMD
is more robust against negative transfer considering the drop in performance of CosMix for
the classes pole, garbage-can, fence, and ground. CMMD on the other hand shows a drop
for the class ground and bike. Overall, CMMD has a competitive performance, especially
since it could be complemented by the teacher-student learning scheme used by CosMix to
generate pseudo-labels while being computationally less expensive. We also show in Figure
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Figure 3: Qualitative results on SemanticPOSS before and after adaptation. The regions
where the adaptation is most visible are circled in blue.

3 the qualitative results of target point cloud predictions before and after adaptation using
CMMD and the corresponding ground truth. These results were generated using the CMMD
model reported in Table 1. We can see that some objects have less uniform predictions before
adaptation, especially for the class trunk, buildings and cars. The adaptation step allows for
better segmentation.
We observe promising results with CMMD’s capacity to learn from a less efficient source
model for UDA. However, further testing across datasets is essential for a conclusive eval-
uation, especially considering challenges on benchmarks like SynLiDAR-SemanticKITTI.
Negative transfer remains a challenge, prompting future exploration of progressive adapta-
tion strategies and class-weight integration into CMMD to mitigate majority class bias.

5 Conclusion

In this work, we proposed a novel contrastive maximum mean discrepancy (CMMD) to
conduct unsupervised domain adaptation for semantic segmentation of large-scale LiDAR
point clouds. Our proposed approach performs contrastive class-wise domain alignment
by bringing closer same-class feature distributions while pushing apart different ones. We
evaluated our method using large-scale real and synthetic LiDAR sequential point clouds.
Experiments show that our approach outperforms the usual domain adaptation approaches
for 3D point clouds and is competitive with the current best-performing technique while
achieving new state-of-the-art performance for 4 minority classes and being more robust
to negative transfer. To our knowledge, this is the first application of MMD for UDA for
semantic segmentation of large-scale LiDAR point clouds.
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