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Abstract

Detecting plant diseases or abnormalities is not a trivial task, as they can be caused
by multiple factors such as environmental conditions, genetics, pathogens, etc.

Because there is a need to help farmers make decisions to maximize crop yields,
many studies have emerged in recent years using deep learning on agricultural images
to detect plant diseases, which can be considered as an anomaly detection task. How-
ever, these approaches are often limited by the availability of annotated data or prior
knowledge of the existence of an anomaly.

We propose an approach that can detect part of the anomalies without prior knowl-
edge of their existence, thus overcoming some of these limitations. To this end, we
train a model on an auxiliary prediction task (plants’ age regression). We then use an
explicability model to retrieve heatmaps whose distributions are studied. For each new
observation, we propose to study how closely its heatmap follows the desired distribution
and we derive a score indicating potential anomalies. Experiments on the GrowliFlower
dataset indicate how our proposed method can help potential end-user to automatically
find anomalies.

1 Introduction

Agriculture, and in particular the management of plant diseases [3, 30] are crucial issues for
the economy and survival of civilizations [19] as they result in the maintenance of agricul-
tural productivity, food security and environmental sustainability.

The use of deep learning, and in particular computer vision models, is becoming increas-
ingly common for the detection of plant pathologies, but comes up against a major problem:
the lack of annotated data [14]. Indeed, as in all anomaly detection use cases, "abnormal"
data, in this case diseased plants, represent a minority in the dataset. It is therefore difficult
to train supervised models because of potential over-fitting. Moreover, anomalies may be
hardly perceptible visually, which complicates the classification task. Figure 1 shows an ex-
ample of two cauliflowers that look similar, yet the one on the left has many defects (3 which
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Figure 1: Two cauliflowers at the same age. The one on the left is abnormal and the one on
the right is normal. Our objective is to automatically identify abnormal cauliflowers through
the proposed a contrario based approach.

are identified by an expert) and the one on the right is healthy. Finally, normal and abnor-
mal plants may present strong intra-class variations that might be hard to learn in supervised
models and prevent from generalization.

The field of anomaly detection is divided into two types of approaches: visual anomaly
detection at the image level, to define whether the image is normal or abnormal, and visual
anomaly detection at the pixel level, used to locate abnormal areas in an image.

Approaches for detecting anomalies at image level can be divided into 4 categories [29]:
density estimation approaches, such as kernel density estimation method [18], which esti-
mate the distribution pattern of normal images and then calculate the probability of a new im-
age with respect to the established distribution; one-class classification approaches, such as
SVDD [26], that learn to extract features of importance from a class and then compares them
with those of a new image to identify how similar or dissimilar they are; reconstruction-
based approaches, such as AnoGAN [20], are based on the assumption that by training a
generative model (such as VAEs [12] or GANs [4]) on normal data, it will not be able to re-
construct abnormal images; and self-supervised models, such as CutPaste [13], which learn
a generalizable representation from unlabeled data by solving a supervised substitution task
that is often unrelated to the target task.

When the problem of anomaly detection is such that we do not have labels on the pres-
ence of anomalies, it is difficult to use learning-based approaches trained on any set of im-
ages. For this reason, a contrario approaches [2, 16] can be effective. The principle of a
contrario approaches is to design a reference model, considered as a null hypothesis rep-
resenting normality. We then look at the probability of a new observation belonging to the
reference model. After thresholding this probability, we can take a decision on whether this
sample is normal or abnormal. This approach has proved its effectiveness, particularly for
localizing anomalies in images [25].

Our approach aims to use an a contrario approach by working with the heatmaps ob-
tained by an explicability model, revealing the features of importance in an image. To do
this, we exploit the ability of a model to extract the representative characteristics of a plant,
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by training it on a pretext task, the prediction of age, and then recovering the heatmaps linked
to the model’s predictions. We then propose an a contrario approach to determine whether a
new image is abnormal or not, by comparing it with the reference distribution. This idea is
based on the assumption that an abnormal plant should not have the same characteristics of
importance as a normal plant.

Many agricultural-related projects incorporate explicability models in their pipelines.
The authors of [10] detect and localize onion blight symptoms using a weakly supervised
model trained from image-level annotations, and localize symptoms by thresholding the
model’s activation map obtained by CAM [32]. In [9], the authors detect plant diseases with
an unsupervised model combining observations with normalization flows, a visual saliency
map and position encodings. The authors of [1] propose CountNet, a weakly supervised
model that counts fruits and flowers in unstructured environments. The model learns from
image-level annotations with the number of objects as input, without explicitly specifying
the nature and location of the object. The authors use two explicability models, Score-CAM
[28] and Guided Backpropagation [24], to demonstrate that the network does indeed exam-
ine flower/fruit features to count. In [11], the authors train a classification model to classify
3 crop zones, then use class activation maps (CAMs) [32] to segment the image and re-
trieve this information as annotation to automate a harvester. Finally, the authors of [7] use
Grad-CAM [23], OSM [31], and LIME [17] to retrieve heatmaps in inference from a model
trained to detect whether a cauliflower is ready to be harvested or not, they then cluster on
the heatmaps to understand the import characteristics for each class. This approach is used
to improve model performance and as a decision aid for farmers harvesting cauliflowers.

Our work aims to use heatmaps as new data, assumed to be less noisy and to indicate
relevant areas, to apply an a contrario approach in order to determine if a cauliflower should
be considered abnormal. We calculate a score based on the probability that the heatmaps of
cauliflowers at different ages belong to the distributions of normal cauliflowers heatmaps at
the same ages and compare it to a predefined threshold (the different stages of our approach
are shown in Figure 2). Our approach requires a sample of images that are assumed to be
normal, without any assumptions about possible anomalies in the rest of the data.

2 Methodology

2.1 Problem definition

Let X = [x1,x2, ...,xT ] be a temporal series of T images of size (L×L) pixels. Our goal is
to detect whether X contains an anomaly using an a contrario approach based on heatmaps
obtained by an explainability model. To achieve this, we train a predictive model on an
auxiliary task (see subsection 3.2). We propose to apply an explainability model, Grad-
CAM [23] that highlights the important areas of the image through heatmaps, indicating
the regions that contributed to the model’s prediction. We obtain the temporal series of
heatmaps H = [h1,h2, ...,hT ] where each heatmap is a matrix ht(i, j) for i, j ∈ [1,L]2 and t ∈
[1,T ] corresponding to the image xt . These heatmaps provide information about the areas of
importance in images for the auxiliary task. Our assumptions is that these areas are different
for normal and abnormal observations.

We aim to calculate a score to determine if ht is abnormal by estimating the probabil-
ity that each pixel is drawn from the pixel distribution (see subsection 2.2) obtained from
heatmaps of normal images at time t of the image time series.
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Figure 2: Pipeline of the proposed anomaly detection approach. For each new observation,
consisting of a time series of images of a single plant at different ages, we retrieve the
heatmaps associated with the different time steps, by applying Grad-CAM (step 1) to a model
trained on an auxiliary task, cauliflower age prediction. We then compare each heatmap
to the reference distribution of heatmaps of healthy plants of the same age. We calculate
an individual score A(h) for each image (see Eq. 1, step 2). These individual scores are
aggregated on the time series to obtain the S(H) score (see Eq. 2, step 3). We then compare
S(H) with a predefined threshold to determine whether the cauliflower can be considered
abnormal (step 4).

In other words, for an image of timestep t, for each pixel ht(i, j) , we calculate the proba-
bility that it is drawn from the reference distribution denoted

H̃t(i, j) = [h̃t,1(i, j) , h̃t,2(i, j) , h̃t,3(i, j) , ..., h̃t,n(i, j) ] ,

which represents the pixel values h̃t(i, j) of n heatmaps obtained from normal images at timestep
t. We compute A(ht), the average of the probabilities that each pixel is drawn from the ref-
erence distribution of pixels i, j at timestep t:

A(ht) =
∑

L
i, j=1 P(ht(i, j) |H̃t(i, j))

L2 . (1)

For each time series H of T heatmaps, we calculate a score S(H):

S(H) =
∑

T
t=1 A(ht)

T
, (2)

which represents the normality score of a heatmap time series. Please note that the score is
not a probability, but rather an arithmetic mean of probabilities, as we cannot assume that
the pixels are independent. This S(H) score can then be thresholded to determine if the time
series X is abnormal.
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Figure 3: Transformations of an image considered in this study (a) Original Images, (b)
Grad-CAM Application after Model Training, (c) Heatmaps Obtained by Grad-CAM

2.2 Calculation of the probability
For the computation of A(ht) (Eq. 1), we aim as the probability that a pixel in an image be-
longs to the reference distribution of the pixel at the same position in the normal images. We
estimate this probability from the reference distribution H̃t(i, j) . Let ht be a new observation.
We calculate P(ht(i, j) |H̃t(i, j)), the estimated probability that the point ht(i, j) is drawn from the
distribution of H̃t(i, j) , using the following process:

1. Histogram calculation: Let b be the number of bins uniformly sampled in the interval
[0,1] (which is the range of values of the heatmaps). For 1 ≤ z ≤ b, let Bz represent
the z-th bin, i.e., Bz =

[ z−1
b , z

b

[
for 1 ≤ z ≤ b− 1, and Bb =

[ b−1
b ,1

]
. Let dz be the

probability density in bin Bz. We have:

dz =
1

n · |Bz|

n

∑
i=1

IBz(h̃t(i, j)) ,

where IBz(h̃t(i, j)) is the indicator function that equals 1 if h̃t(i, j) is in bin Bz, and 0
otherwise. |Bz| represents the bin width, and n is the total number of observations.

2. Probability estimation:

Let z be the index of the bin in which the point ht(i, j) falls: z =
⌊

ht(i, j) ×b
⌋
+ 1.

The estimated probability that the point ht(i, j) belongs to the distribution H̃t(i, j) is then
P(ht(i, j) |H̃t(i, j)) = dz · |Bz|.

3 Experiments and results

3.1 GrowliFlower Dataset
The GrowliFlower dataset [8] contains georeferenced time series based on drone images of
two cauliflower fields acquired in 2020 and 2021. We use a subset of the dataset called
GrowliflowerR which contains RGB orthophotos and phenotypic characteristics collected on
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740 plants, including information on whether cauliflowers are affected by a disease or defect.
The in-situ data propose the definition of 19 defects, but in practice the defects have variants,
explained verbatim in the files corresponding to each field. For the purposes of this study,
since our aim is to detect anomalies but not to characterize them, we consider all defects to
be anomalies.

We manually split the dataset into Train, Validation and Test sets, containing 60%, 30%
and 10% of the cauliflower image time series respectively. Our auxiliary task is age regres-
sion (see Figure 3(a) which represents a series of images with associated ages), defined by
the difference in days between the date the photo was taken and the date the cauliflower was
planted (from 1 to 93 days).

3.2 Auxiliary task: plant age prediction
In this study, we trained a ResNet18 model [5] to predict the age of cauliflowers. The hyper-
parameters were set to optimize the model’s performance on the validation set. The model
was trained over 200 epochs with an initial learning rate fixed at 0.1. We used stochastic
gradient descent with a weight decay of 0.2 with the Huber loss [15]. We use a learning
rate scheduler to divide the learning rate by a factor of 10 if the loss is not reduced for 5
consecutive epochs. The model obtains a mean square error (MSE) of 30.76 and an R2 score
of 0.95 on the test data.

3.3 Anomaly detection
Once the age prediction model has been trained, we apply Grad-CAM to the predictions
made by the model, highlighting areas of importance (see Figure 3(b) superimposing the
original images with the heatmaps obtained by applying Grad-CAM). We retrieve the heatmaps
(see Figure 3(c) series of heatmaps obtained with Grad-CAM) to apply our anomaly detec-
tion method.

We collect all normal observations from the training and validation datasets and define
our age-based reference distributions. The dataset on which we aim to detect anomalies
includes the Test dataset, as well as all the abnormal data from the Train and Validation
datasets, i.e. 64% abnormal cauliflowers and 36% normal cauliflowers.

3.4 Model comparison
We compare our approach with two other anomaly detection approaches: f-AnoGAN [21],
a self-supervised reconstruction-based approach, which learns to reconstruct normal images.
f-AnoGAN detects anomalies by calculating a score by combining the residual error of the
discriminator features and the image reconstruction error; and One-Class Support Vector
Machines (OCSVM) [22], an unsupervised model of the one-class classification family,
which learns the boundary of normal data points and identifies data outside this boundary as
anomalies.

We train the f-AnoGAN model with the same parameters as the authors of the original
paper [21]. Considering OCSVM, we chose to use an "rbf" kernel, with gamma = 0.001 and
nu = 0.03 after comparing different parameters. f-AnoGAN calculates a score per image, so
we average the scores to obtain a score per cauliflower. The OCSVM model, on the other
hand, does not give an anomaly score, but classifies data according to their position relative
to a decision boundary. In order to have a class for each cauliflower, we take the class most
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Figure 4: Precision-recall curves for the proposed model and f-AnoGAN.

Model AUC F1-score precision recall
Proposed model 0.76 0.85 0.74 1.0

f-AnoGAN 0.63 0.85 0.74 1.0
OCSVM X 0.72 0.69 0.76

Table 1: Anomaly detection results. We report the Area Under Curve (AUC), the F1-score,
the precision and the recall.

frequently attributed to the different time steps in the evolution of a cauliflower. Figure 4
shows the precision and recall of the different approaches tested. Note that OCSVM does
not appear as the decision boundary cannot be adjusted to balance the precision and the
recall. We report the different numerical results in Table 1.

4 Discussion

Auxiliary task The core idea of our method is to use heatmaps as data for a contrario
study of anomaly detection. For this, the prerequisite is to have a prediction model powerful
enough to exploit its ability to extract features of importance in an image. We work with im-
age time series dataset. Hence, we first tried to train a hybrid model (ResNet18 followed by
an LSTM [6]) on the age prediction task so that the recurrent model could take into account
the temporality of cauliflower evolution from the feature vectors obtained from the ResNet18
model. However, despite explicitely taking into account sequential data, it underperforms in
our context. The age sequences are almost always identical, which leads the model to learn
on the basis of these sequences rather than the images themselves, resulting in very poor
performance (MSE of 316, which is a very high value given that the age to be predicted is in
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the interval [1,93]).

Comparison with other methods For comparison, we evaluate f-AnoGAN, a model based
on a reconstruction strategy. In this model, an image is assigned a high score if it diverges
significantly from the expected reconstruction, suggesting that it is an anomaly. Observations
are then classified as anomalous if their scores exceed a defined threshold. Figure 4 indicates
that our model achieves a perfect precision for recall values up to 10%, enabling accurate
detection of a fraction of anomalies. Conversely, the f-AnoGAN model assigns consistently
low scores. It should be noted that this distribution of scores does not clearly distinguish
normal from abnormal images, resulting in a decrease in precision and recall with increas-
ing threshold. Furthermore, Table 1 shows that the F1-score is identical for our model and
f-AnoGAN. This F1-score is obtained at a recall value of 1. However, our approach presents
a superior value of AUC, a performance attributable to the high precision obtained at low
recall. OCSVM shows lower performances in terms of precision and recall. These obser-
vations underline the advantage of an adjustable threshold, particularly in contexts where
anomalies are hard to visually distinguish.

Limitations of the proposed approach Our study is based on the hypothesis that the
characteristics of importance are not the same for normal and abnormal cauliflowers, and
that this information can be found in the heatmaps obtained by Grad-CAM (see the heatmaps
of a healthy cauliflower in the first series of images in the Figure 5 and those of a cauliflower
with anomalies in the second series). We calculate a score for each cauliflower to determine
whether it is abnormal. To do this, we calculate the average of the A(ht) scores for t in
[1,T ], representing the extent to which the image at age t follows the reference distribution
of healthy images at the same age. Thus, in an exaggerated case, if A(ht) equals 1, the image
is normal, and if A(ht) equals 0, it is abnormal. Since we calculate the final score S(H) as
an average of the scores at each time step, and it’s possible for a cauliflower to present an
anomaly at just one time step, the value of the score can be close to the score of a normal
cauliflower. Thus, our approach is better able to detect abnormal cauliflowers that contain
anomalies at several time steps. The proposed approach therefore makes it possible to detect
a small proportion of anomalies without prior knowledge, with a certain level of confidence
depending on the chosen threshold.

Our approach does not result in a constant number of false alarms. However, we show
that it is possible to set a small threshold below which all observations are correctly classified
as anomalies. This finding is important, as it highlights the possibility of using a predefined
threshold to successfully identify a proportion of anomalies. Despite the fluctuating number
of false alarms, such a strategy can be useful in ensuring a minimum level of anomaly detec-
tion, providing valuable insights for future research and practical applications. In practice,
we show that this score can be used as an on-field indicator to be manually reviewed. In ad-
dition, the superimposition of heatmaps on the original images, combined with information
such as the age predicted by the model and the actual age (see Figure 5 which represents
the original images as well as the heatmaps superimposed on the original images with the
predictions made by the model), can be used by farmers to analyze the various factors linked
to anomalies. In fact, knowing which areas of the image have enabled the model to make its
prediction, whether correct or not, can help to understand the important characteristics of a
plant, and thus identify diseases more quickly.
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Figure 5: Time series of images of two cauliflowers, with and without heat map overlay,
with, at each step, the age of the cauliflower, the age predicted by the model and associated
annotations indicating the presence/nature of an anomaly. ’Pl’ stands for "plant lying down"
and ’dP’ indicates a dead plant.

5 Conclusion

In this study, we propose a decision-support model for anomaly detection and demonstrate its
effectiveness on a dataset of time series of cauliflower images. The proposed model leverages
spatial information learned from an auxiliary task (in our case, plant age regression) and
does not require prior assumptions about the presence of anomalies in the data. The only
prerequisite is to have a sample of healthy data. The objective is to identify a subset of
anomalies thereby assisting farmers in understanding plant phenotyping.

The results show that our approach is useful for detecting anomalies that are difficult
to see visually. Indeed, it manages to accurately detect a small proportion of anomalies,
unlike the f-AnoGAN and OneClass SVM models, which fail to capitalize on anomaly-
related features.

In future work, we aim to test other explainability approaches such as LIME [17] or
Guided Backpropagation [24] to evaluate their impact on the score computation and, subse-
quently, on anomaly detection.

In the dataset under study, the anomalies associated with cauliflowers do not exhibit
temporal continuity. An anomaly may be present at a certain timestep t and then vanish,
just as a new anomaly may surface at timestep t +∆t. Consequently, while our current work
deals with time series of images, we treat each image independently due to this lack of
continuous anomalies. We have not observed any continuity in the in-situ data indicating
cauliflower-related anomalies. In our future research, we want to work with datasets that
exhibits continuous anomalies from a certain time step t, and exploit the temporal aspect of
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the images. More specifically, we wish to build on models such as BFAST [27], which would
enable us to accurately determine when an anomaly manifests itself. In doing so, we aim to
provide even more accurate and timely information to help farmers manage their crops more
effectively.
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