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In this supplementary, we give additional information about our proposed VATrack
method for end-to-end amodal video instance segmentation.

A Metrics
For our evaluation, we use the commonly used metrics average precision (AP) and video-
based average precision (vAP) from instance and video instance segmentation (VIS), respec-
tively. Here, we briefly recall their definition.

AP: Given true positives (TP), false positives (FP), false negatives (FN), and true nega-
tives (TN), precision and recall are defined as follows:

Precision =
TP

TP+FP
, Recall =

TP
TP+FN

. (3)

In general, AP is defined as the area under the precision-recall curve. The definition used in
this work stems from MS-COCO [13] and averages APs at IoU thresholds from 0.5 to 0.95.
Metric AP50 is AP at an IoU threshold of 0.5. The IoU thresholds are used to determine
correctness of a prediction, and are applied to the overlap of the instance masks mt,n and
mt,n. Note that the image-based IoU is calculated for an instance n in a single frame t and is
defined as:

IoU(mt,n,mt,n) =
|mt,n ∩mt,n|
|mt,n ∪mt,n|

. (4)

To calculate amodal metrics, we use the amodal instance masks at,n. We simply use the
COCOAPI [13] for evaluation. This is also the evaluation metric of the SAIL-VOS dataset
[11] by considering next to AP and AP50 also specific AP50 values for small, medium, large
objects, as well as partially and heavily occluded objects.
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Figure 1: Qualitative results of VATrack (bottom) compared to MaskJoint [11] (top) for a se-
quence xt

t−3 with overlayed colorized amodal predictions at
t−3 on SAIL-VOS-cut. VATrack de-

tects and tracks all instances (green, pink and blue masks/bboxes) consistently across frames, while
MaskJoint cannot exploit temporal context due to the missing tracking method (resulting in random
mask/bbox colors) and thus, MaskJoint fails to detect severely occluded instances.

vAP: As there is not yet a video-based evaluation defined on the SAIL-VOS dataset, we
borrow our proposed evaluation metric from the standard VIS task [19]. Here, the video-
based average precision vAP is calculated as for instance segmentation, however, the video-
based IoU between a predicted and ground truth instance is defined as [19],

vIoU(mT
1,n,m

T
1,n) =

∑
T
t=1 |mt,n ∩mt,n|

∑
T
t=1 |mt,n ∪mt,n|

, (5)

i.e., a predicted instance mT
1,n in a video sequence xT

1 is only considered a correct prediction if
there is sufficient overlap with all the ground truth instance masks mT

1,n. This is in contrast to
the image-based AP where the correctness of a prediction is only based on the IoU between
the instance masks in a single frame t. Hence, bad tracking capabilities will result in a
low IoU. To calculate our amodal video evaluation, we use the amodal masks at,n and at,n,
respectively, to calculate vIoU in (5).

B Implementation and Training Details
For comparability reasons, we train all methods using the ResNext-101 backbone [18].
We use the full available image resolution of 1280×800. We report an ablation for smaller
input resolutions in Supplementary Section C.3. For initialization, we use the respective
ImageNet-pretrained weights.
Video-based methods: Our training protocols follow largely the mmtracking [6] reposi-
tory and the details of the tracking methods [15, 19]. Using the ResNext-101 backbone
the peak learning rate is set to 0.0025. We have 2000 warm-up iterations with warm-up ratio

1
2000 , and we reduce the learning rate at epoch 8 and 11 by a factor of 1

10 .
Image-based methods: We use the standard training procedure of the mmdetection [4]
repository.
All methods: We train all methods for 12 epochs on an NVIDIA A100 GPU using a batch-
size of 4. While we monitor results on the validation dataset, we found that the last (12th)
model checkpoint performs best for all methods. We adopt hyperparameters for image and
video approaches from prior art [4, 6, 15, 19] without further tuning. All our implementa-
tions are done in PyTorch [16] using version 1.7.0.
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Figure 2: VATrack (QD-based) results if only amodal, or both bounding boxes (bboxes) are used in
training the network. We show results for visible VIS (blue) and amodal VIS (red) on the SAIL-VOS-
cut dataset for both image- and video-level evaluation.

Equation (2) in the main paper shows the loss function for joint training of amodal and
visible VIS. We chose λ1 = λ2 = 1 as it is the standard setting used in both instance seg-
mentation and VIS following the mmdetection [4] and mmtracking [6] repositories.
Supplementary Section C.2 contains an ablation for various values of λ1 and λ2. During
inference, we identify instance features f1, . . . , fNt in the memory with new ones ft,n of a cur-
rent instance n, if the probability (i.e., softmax-based value for the MaskTrack R-CNN
and bi-directional softmax value for the QDTrack tracking method) exceeds the value of
0.5, otherwise instance n is considered as a new instance.

C Ablation Studies
In this section, we show results of further ablation studies of our proposed VATrack (QD-
based) method.

C.1 Qualitative Analysis and Ablation
Qualitative analysis: Fig. 1 shows qualitative results of QD-based VATrack (bottom) and
the image-based MaskJoint method [11] (top). We observe that MaskJoint recovers
well partial occlusions, e.g., for frame index t−3. However, it fails to detect the left person
receiving the hug as the person is heavily occluded in all following frames. VATrack, on the
other hand, is able to perceive all three persons in the sequence in all four frames. The person
receiving the hug is detected when only partially occluded (t−3), heavily occluded (t−
2, t), and even in the full occlusion case (t−1). The results show that image-based methods
cannot adequately recover heavy and total occlusions, whereas our video-based VATrack
can successfully use the temporal context for this purpose.
Ablation on bounding box heads: Fig. 2 shows results for employing different bounding
box heads in the QD-based VATrack method, i.e., using only the amodal bounding boxes,
or both bounding boxes. Using both means that the network is trained with two bounding
box heads instead of one. For image-level evaluation, Fig. 2 shows that using both bounding
boxes can lead to slight improvements in some of the metrics, e.g., visible APS

50. However,
for the amodal image-level metrics as well as for most visible image-level metrics, we do not
observe significant improvements when using additional visible bounding boxes, compared
to using only the amodal bounding boxes.
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λ1 λ2 visible amodal AP AP50 APP
50 APH

50 APL
50 APM

50 APS
50

1.0 1.0 ✓ 18.3 28.6 29.7 20.1 38.1 26.9 15.7
0.5 1.5 ✓ 18.0 27.3 29.3 19.4 34.4 27.4 11.1
1.5 0.5 ✓ 18.0 28.4 29.2 20.0 40.2 28.4 11.5

0.75 0.25 ✓ 17.5 27.7 29.4 19.2 35.0 27.2 10.8
1.0 1.0 ✓ 17.3 27.9 29.1 18.3 38.6 28.8 12.7
0.5 1.5 ✓ 16.5 26.2 28.1 17.2 35.2 28.6 10.3
1.5 0.5 ✓ 17.9 28.3 29.3 19.0 41.3 31.0 13.4

im
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e-
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d

m
et

ri
cs

0.75 0.25 ✓ 17.3 27.9 29.3 18.4 37.1 29.4 11.0

λ1 λ2 visible amodal vAP vAP50 vAPP
50 vAPH

50 vAPL
50 vAPM

50 vAPS
50

1.0 1.0 ✓ 14.1 22.3 22.0 12.8 32.8 15.6 8.8
0.5 1.5 ✓ 14.6 22.8 21.5 13.8 31.1 15.3 9.2
1.5 0.5 ✓ 11.9 18.8 20.8 8.4 31.4 15.5 8.9

0.75 0.25 ✓ 12.6 20.6 21.7 10.1 28.7 14.8 9.0
1.0 1.0 ✓ 14.0 23.0 21.9 14.6 36.4 21.5 8.6
0.5 1.5 ✓ 13.8 23.3 21.0 15.5 37.0 21.4 8.7
1.5 0.5 ✓ 11.5 19.4 20.6 9.4 35.3 21.7 9.0

vi
de

o-
ba

se
d

m
et

ri
cs

0.75 0.25 ✓ 12.7 21.9 21.7 12.7 34.9 20.3 8.8
Table 5: Image-level results (%, upper part) and video-level results (%, lower part) of QD-based
VATrack on the SAIL-VOS-cut validation data for different weights for the visible and amodal mask
loss terms λ1,λ2 in (2) of the main paper. We show, whether metrics are reported for the visible or
amodal masks by checkmarks. Best results are in bold, second best are underlined.

For video-level evaluation, we see that using both bounding boxes can improve the re-
sults in a few cases, i.e., amodal and visible vAPP

50 and vAPM
50 in Fig. 2. We do not observe

a significant improvement in the video-level visible metrics (blue) when including a sec-
ond (visible) bounding box head. Hypothetically, the amodal bounding boxes already carry
enough localization guidance for the mask prediction so that the additional bounding box
branch adds mostly computational complexity to the method. This is also supported by our
results from Fig. 2, where using both amodal and visible bounding boxes mostly did not
yield improvements. Thus, our proposed VATrack uses only the amodal bounding boxes.

C.2 Loss Weights Ablation for the Mask Heads
Equation (2) of the main paper shows the VATrack loss function Jjoint. The influence of
each mask head loss Jvisible and Jamodal is governed by two pre-selected hyperparameters
λ1,λ2, respectively. Table 5 reports results of QD-based VATrack for both image-based
metrics (blue) and video-based metrics (orange) and for both amodal and visible masks.
For the main results of our paper, we chose an equal weighting of both loss terms by 1.0
per default. We see in Table 5 that this leads to balanced results, e.g., the best amodal
image-level AP of 18.3%, second best visible image-level AP of 17.3%, second best amodal
video-level vAP of 14.1% and the best visible video-level vAP of 14.0%. In the image-based
metrics, we observe that a larger weighting of the visible loss term (λ1 = 1.5) compared to the
amodal loss term (λ2 = 0.5) improves clearly all visible image-based metrics (AP= 17.9%
etc.). Interchanging this weighting to λ1 = 0.5,λ2 = 1.5 does not have the same effect on
the amodal image-based metrics (no bold numbers in the second row of Table 5). Here,
we actually observe performance drops compared to the equal weighting by 1.0, e.g., APL

50
drops from 38.1% to 34.3%. Similarly, this effect is also not as pronounced for the video-
based metrics, where favoring the amodal loss term Jamodal by setting λ2 = 1.5 leads to
improved performance for both amodal and visible video evaluation, e.g., amodal vAP50
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input resolution visible amodal AP AP50 APP
50 APH

50 APL
50 APM

50 APS
50

1280×800 ✓ 18.3 28.6 29.7 20.1 38.1 26.9 15.7
640×400 ✓ 13.8 22.2 23.1 15.2 32.1 19.8 6.5
320×200 ✓ 7.8 13.1 13.7 10.3 22.3 7.6 0.2

1280×800 ✓ 17.3 27.9 29.1 18.3 38.6 28.8 12.7
640×400 ✓ 14.0 22.7 23.0 15.6 34.5 21.6 6.5im

ag
e-

ba
se

d
m

et
ri

cs

320×200 ✓ 8.1 13.2 13.6 10.4 24.7 8.4 0.4

input resolution visible amodal vAP vAP50 vAPP
50 vAPH

50 vAPL
50 vAPM

50 vAPS
50

1280×800 ✓ 14.1 22.3 22.0 12.8 32.8 15.6 8.8
640×400 ✓ 12.4 19.3 18.1 10.9 25.5 8.8 6.1
320×200 ✓ 6.1 10.6 10.3 7.2 18.6 2.7 0.0

1280×800 ✓ 14.0 23.0 21.9 14.6 36.4 21.5 8.6
640×400 ✓ 12.2 20.0 18.1 12.1 33.4 14.9 6.0vi

de
o-

ba
se

d
m

et
ri

cs

320×200 ✓ 6.4 11.1 10.3 8.6 26.6 7.3 0.0
Table 6: Image-level results (%, upper part) and video-level results (%, lower part) of QD-based
VATrack on the SAIL-VOS-cut validation data for different input resolutions. We show, whether
metrics are reported for the visible or amodal masks by checkmarks.

Method Backbone V A TC AP AP50 APP
50 APH

50 APL
50 APM

50 APS
50

MaskAmodal [11] ? ✓ 13.0 23.0 24.3 16.7 36.6 21.5 6.1
MaskJoint [11] ? ✓ ✓ 14.1 24.8 24.3 18.9 37.8 21.5 5.7
MaskAmodal∗ RX-101 ✓ 16.3 25.6 27.4 17.1 35.2 24.2 10.1

im
ag

e-
ba

se
d

MaskJoint ∗ RX-101 ✓ ✓ 16.7 25.6 26.9 17.3 33.0 22.3 9.0
AmodalTrack (MT-based) RX-101 ✓ ✓ 15.9 25.7 24.9 17.8 36.8 22.8 11.2
Ours: VATrack (MT-based) RX-101 ✓ ✓ ✓ 16.4 26.0 24.9 18.0 38.6 22.5 10.6
AmodalTrack (QD-based) RX-101 ✓ ✓ 17.8 27.4 29.2 18.6 34.7 26.8 11.4

vi
de

o-
ba

se
d

Ours: VATrack (QD-based) RX-101 ✓ ✓ ✓ 18.3 28.6 29.7 20.1 38.1 26.9 15.7
Table 7: Amodal instance segmentation image-level performance (%) on the SAIL-VOS validation
data for image-based methods, and for video-based methods. Marker ∗ denotes resimulated results.
Checkmarks indicate whether the method predicts visible (V) and/or amodal (A) masks. The video-
based methods take temporal context (TC) into account, shown by checkmarks. Results have been
produced using the ResNext-101 (RX-101) backbone, Hu et al. [11] do not report their backbone
(marked by: ?). Best results are in bold, second best are underlined.

improves to 22.8% compared to equal weighting (22.3%) and in the visible case we observe
an improvement of +0.3% to 23.3% compared to equal weighting (23.0%). On video-level,
weighting the visible loss term higher than the amodal one, i.e., λ1 = 1.5,λ2 = 0.5, does
not lead to an improved visible video-level performance, in contrast to our results on image
level.

To summarize, regarding our investigated set of hyperparameters, we see that results of
course depend on this hyperparameter choice. This is a well known observation in multi-task
learning [12]. In contrast to the natural expectation that amodal or visible performance can
improve by a higher weighting of the respective loss term, our ablation does not confirm this.
However, we can take away that our default equal weighting by 1.0 performs competitively
with the other investigated sets of hyperparameters, and that interchanging our VATrack
results of the main paper with those of another set of hyperparameters would not affect
the experiments significantly. Instead tuning these hyperparameters could lead to additional
gains.
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Method Backbone V A vAP vAP50 vAPP
50 vAPH

50 vAPL
50 vAPM

50 vAPS
50

AmodalTrack (MT-based) RX-101 ✓ 0.1 0.2 0.3 0.1 1.0 0.1 0.0
Ours: VATrack (MT-based) RX-101 ✓ ✓ 2.3 3.1 3.8 1.7 3.7 1.5 0.3
AmodalTrack (QD-based) RX-101 ✓ 4.2 5.5 6.6 0.7 4.1 3.1 5.4
Ours: VATrack (QD-based) RX-101 ✓ ✓ 3.8 5.4 6.5 0.8 5.7 3.7 5.4

Table 8: Amodal instance segmentation video-level performance (%) on the SAIL-VOS validation
data. Checkmarks indicate whether the method predicts visible (V) and/or amodal (A) masks. Results
have been produced using the ResNext-101 (RX-101) backbone. Best results are in bold, second
best are underlined.

C.3 Influence of Input Resolution

Here, we regard the influence of the input resolution of the video frames on the performance
of QD-based VATrack. While for all our experiments in the main paper, we considered a
resolution of 1280×800, which is the image resolution of the original SAIL-VOS dataset, we
are interested in the impact of smaller input resolutions on the performance. Table 6 shows
those results. We omit highlighting the best and second best methods as for this ablation,
we of course expect performance to drop for smaller input resolutions. We show results for
the original resolution 1280× 800, 640× 400 and 320× 200. Our first observation is that
the performance drop between 1280×800 and 640×400 is for most metrics (expect image-
based APS

50) much smaller than the performance drop from resolution 640× 400 to 320×
200, e.g., amodal image-based AP50 drops from 28.6% (1280×800) to 22.2% (640×400) to
13.1% (320×200). Additionally, vAPS

50 drops for both amodal and visible evaluation to 0%,
and APS

50 drops to almost zero as well. From this, we deduce that using half of the original
resolution can still lead to reasonable results for the sake of less memory consumption and
shorter training times, however, an image resolution below seems no longer able to perform
the task of end-to-end amodal VIS as it even fails detecting a certain range of instances at
all.

D Results on SAIL-VOS dataset

In this section, we show the evaluation results for all methods on the SAIL-VOS validation
data. Note that we trained all methods on the SAIL-VOS-cut training data. For the image-
based methods, this has no impact as for them SAIL-VOS = SAIL-VOS-cut holds. The
video-based methods cannot be trained on the SAIL-VOS training data. The jump cuts
prevent convergence during the training process by significantly increasing all loss terms
whenever a jump cut is part of the current batch.

In Table 7, we show amodal image-level results on the SAIL-VOS validation set. As
in the main paper, we highlight image-based methods in blue and video-based methods in
orange. We observe that the results for the image-based methods (in blue) do not change
compared to Table 1 (main paper). Not taking temporal context into account, SAIL-VOS-
cut and SAIL-VOS are identical. Interestingly, the image-level results do also not change
for the video-based methods, i.e., the longer videos of SAIL-VOS do not provide additional
temporal context for improved amodal mask predictions and the jump cuts do not affect the
image-level performance. However, as expected, we see a significant drop in amodal video-
level performance as can be seen in Table 8 compared to Table 3 (main paper), as the jump
cuts of SAIL-VOS naturally hinder the tracking performance.
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Method Backbone V A vAP vAP50 vAPP
50 vAPH

50 vAPL
50 vAPM

50 vAPS
50

MaskTrack R-CNN RX-101 ✓ 0.1 0.2 0.3 0.1 1.1 0.2 0.0
Ours: VATrack (MT-based) RX-101 ✓ ✓ 2.3 3.1 3.8 1.6 4.4 1.4 0.3

QDTrack RX-101 ✓ 3.4 9.5 6.2 5.4 8.5 3.1 5.6
Ours: VATrack (QD-based) RX-101 ✓ ✓ 3.2 7.1 6.6 2.7 9.0 4.6 5.5

Table 9: Visible instance segmentation video-level performance (%) on the SAIL-VOS validation data.
Checkmarks indicate whether the method predicts visible (V) and/or amodal (A) masks. Results have
been produced using the ResNext-101 (RX-101) backbone. Best results are in bold, second best
are underlined..

Table 8 shows the results of amodal video instance segmentation on the SAIL-VOS val-
idation data. In comparison to Table 3 (main paper) these results impressively show the
effect of the jump cuts in SAIL-VOS: Performance in all metrics drops significantly as the
methods are no longer able to track instances throughout an entire video sequence, and espe-
cially small instances can no longer be recognized and tracked (see vAPS

50 for all methods).
For these small instances at jump cuts, identification with previous instances apparently be-
comes the hardest. In these cases, SAIL-VOS-cut resets the instance set Nt at jump cuts (by
considering this the starting and end point of a sequence), which improves the performance
considerably (see main paper Tables 3, 4).

Table 9 shows the results of visible video instance segmentation on the SAIL-VOS vali-
dation data. Results follow the impression of Table 8: As for the amodal video-level evalu-
ation, all performance metrics drop significantly compared to the results on SAIL-VOS-cut
validation data in Table 4 (main paper). Also for the visible video instance segmentation,
the jump cuts prevent concise identification and tracking of instances throughout the video
sequences.

E Limitations and Ethical Implications
Limitations: Our proposed QD-based VATrack outperforms the image-based state of the
art on the SAIL-VOS (=SAIL-VOS-cut) validation data. Additionally, VATrack establishes
a new video-based state of the art on the SAIL-VOS-cut validation data and can be used as
reference in future work. However, it needs to be noted that we did not investigate the ideal
hyperparameter choice λ1,λ2 in Equation (2) of the main paper for all methods. Instead,
for our main results we chose per default the hyperparameters according to [19], λ1 = λ2 =
1.0, for all investigated methods of our work. Table 5 gives an insight, how results for the
proposed QD-based VATrack depend on this parameter choice for a limited subset of values
for λ1,λ2. It is widely known in the field of multi-task learning, that results might be sensitive
to this choice of parameters [5, 12]. So while for QD-based VATrack the default choice
λ1 = λ2 = 1.0 performs competitively to the other hyperparameter choices (see Table 5),
we did not investigate this for the other joint (baseline) methods, i.e., MT-based VATrack
and MaskJoint. This study is not typically part of either instance segmentation or VIS
[2, 9, 15, 17, 19] and remains for future work.

Additionally, SAIL-VOS, to the best of our knowledge, is the only publicly accessible
dataset meeting our label requirements. So to generalize to other datasets, for future work we
aim to investigate softening the hard label requirements of our method to weaker supervision
and few-shot learning.
Ethical implications: Since SAIL-VOS is the only dataset providing video-level amodal
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ground truth labels while also enabling a comparison against the state of the art, it was
chosen based on practical availability for training and evaluation of VATrack. However,
as the SAIL-VOS dataset is derived from the GTA V game engine, it suffers from existing
criticism of the GTA V video game. It has faced criticism for its misogynistic portrayal of
women and hypermasculine portrayal of men [10], which thus has been transported to the
SAIL-VOS video data as well. There have been many investigations into the effect of such
stereotypical and violence-prone portrayals of humans in video games [1, 7, 8, 14], which
can, e.g., lead to a correlation with higher tolerance to sexual harassment [7]. Moreover,
most persons depicted in the SAIL-VOS dataset are men, which will likely result in worse
perception rates for women overall [3]. So the SAIL-VOS dataset has to be considered
carefully under those ethical controversies. For this work, it was chosen due to its practical
availability and comparability to prior art.

While we investigate amodal perception towards making applications of perception meth-
ods safer, e.g., automated driving, medical imaging, or general robotic movements, there is
of course a second side to this as well. At the moment, amodal perception is already part
of first-person shooting games where the player can use it to have an advantage over his
or her opponents by being able to observe them while occluded or hidden. While in sim-
ulated worlds, this amodal knowledge is given by the scenario generation pipeline and is
not learned, learned methods could potentially bring this technology to the real world and
provide the means to weaponize it. This is true to the same amount for any environment
perception and tracking method.
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