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Abstract

Amodal perception is the important ability of humans to imagine the entire shape of
occluded objects. This ability is crucial for safety-relevant perception tasks such as au-
tonomous movement of robots and vehicles. Existing methods mostly focus on amodal
perception in single images. However, video understanding is important for amodal per-
ception as it provides additional cues for perceiving occlusions. In this paper, we are
the first to present an end-to-end trainable amodal video instance segmentation method.
Specifically, we present a strategy to extend existing instance segmentation models by an
amodal mask branch as well as a tracking branch, inspired by video instance segmenta-
tion (VIS) methods. The tracking branch allows to not only predict amodal and visible
masks at the same time, but also to connect them over time by predicting video-based
instance IDs. Our video-based method VATrack outperforms the existing image-based
state-of-the-art methods on the commonly used SAIL-VOS dataset’s benchmarks in all
amodal metrics, while also improving most modal (i.e., visible) metrics. Additionally,
we introduce a novel video-based evaluation where our method may serve as a baseline
for future research on amodal VIS. Code for VATrack can be found on github1.

1 Introduction
Many computer vision tasks aim at reaching at least human-level perception performance,
leading to many advances towards high-performing recognition tasks [2, 12, 13, 21, 22, 25,
32, 33, 35, 43, 44, 48, 52] with a wide range of applications, e.g., automated driving [5, 18],
and video surveillance [46]. In all applications, detecting and segmenting the present in-
stances, as well as monitoring their movement throughout a sequence is crucial for safety,
i.e., it is critical to understand the whereabouts of all actors or objects throughout a relevant
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Figure 1: Prior work studies amodal instance segmentation on single images (right). However, to track
heavy and total occlusions, video-based methods are required (left): Our end-to-end trainable amodal
video instance segmentation method VATrack recovers the totally occluded person (green) at time t,
as the method has seen earlier inputs x1, . . . ,xt−1 and memorizes internal states. Any single image-
based method can only fail for total occlusion.

time span [9, 10, 17, 30]. This is especially important for occlusions of instances in a sce-
nario, either due to a temporal full occlusion, or a partial occlusion, which should be both
perceived, e.g., to avoid accidents due to such occlusion-related corner cases [3, 4, 7, 23].

Humans perceive the full shape of occluded instances. In the frames xt−2,xt−1,xt in Fig.
1, they understand the full shape of the occluded person (green). This amodal perception is
a crucial ability for human video understanding [34, 36]. Perception systems only perceive
what is visible, and cannot recognize instances under heavy occlusion, especially when char-
acteristic parts remain unseen [40, 58], In Fig. 1 the image-based prior art fails to detect the
fully occluded person in frame xt . Hence, amodal perception in perception systems will
impact many applications suffering from poor perception and improve video understanding.

End-to-end video instance segmentation (VIS) methods provide temporal context to in-
stance segmentation and have profited from advances in both instance segmentation and
tracking [27, 49, 50, 54]. However, the performance weakens when faced with occlusions
[40]. While methods have been investigated to improve detection of occluded objects, we are
the first to bring together end-to-end VIS with amodal segmentation techniques to provide
temporally consistent amodal instance masks for video sequences. Our concept can be seen
on the left in Fig. 1. It can predict the green instance at time instant t, while the image-based
amodal instance segmentation on the right of Fig. 1 fails due to the missing temporal context.

To achieve end-to-end trainable amodal VIS, we extend standard instance segmentation
by two architectural contributions: First, we add an amodal mask head for amodal instance
segmentation. It outputs an amodal mask at as in Fig. 1. Joint training with the visible
instance segmentation head enables implicitly learned cues for mutual benefit of visible and
amodal segmentation. Second, we introduce an additional tracking head to provide video-
level instance IDs to associate different amodal masks over time and to improve amodal
mask quality for heavy and total occlusions. For the tracking method, we adapt well-known
VIS methods [38, 50] to our purposes. Our proposed novel approach for a jointly trained
visible and amodal VIS termed VATrack leads to visible and amodal performance gains.

While there are benchmarks for image-based amodal segmentation [24, 35, 41, 59], cur-
rently there exists no video-based evaluation. Hence, we introduce a video-based evaluation
as well as video-based metrics on the SAIL-VOS dataset [24] for amodal VIS. We present
VATrack variants as baseline for future research on amodal VIS. Additionally, we show
that our video-based model significantly outperforms existing approaches in a single image-
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Figure 2: Inference of our proposed jointly trained visible and amodal video instance segmentation
(VATrack): Given an input frame xt , the network outputs the corresponding instance class st,n, its
amodal bounding box bt,n, and both the visible and amodal masks mt,n,at,n. The tracking head extracts
features ft,n from the RoI features fRoI

t,n for comparison with the existing memory of instance features
f1, . . . , fNt to identify a predicted instance with either a known instance ID n ∈Nt = {1, . . . ,Nt} or to
assign a new instance ID n = Nt + 1. The memory of instance features is updated with the extracted
features ft,n, hence we denote the memory features without the frame index t.

based evaluation, thereby setting a new state-of-the-art performance on SAIL-VOS.
Our contributions can be summarized as follows: First, we propose the first end-to-end

trainable method for amodal video instance segmentation. Second, our joint approach for
visible and amodal VIS VATrack improves both visible and amodal performance, setting a
new state of the art. Finally, we introduce the first video-based evaluation for amodal VIS.

2 Related Work
We review works from both amodal segmentation and video instance segmentation.
Amodal instance segmentation: In the last years, amodal segmentation has gained a lot
of attention for semantic segmentation [6, 8, 39] and instance segmentation [31, 37, 42,
45]. First methods for amodal segmentation predicted the amodal instance mask given an
input image, or given both the image and the visible mask [59], or by post-processing [29].
Many methods since have adapted the instance segmentation network Mask R-CNN [22]
to predict amodal masks using multiple head configurations for the network: Follmann et
al. [19] employ an invisible mask head that predicts the occluded instance parts. Qi et al.
[41] add a classifier to decide whether a region of interest (RoI) proposal is occluded. Other
works use distance information in the learning process [55], include occlusion reasoning
[53], model occlusions via hierarchical fusion [1] or use graph convolutional networks as
occluder segmentation and occludee segmentation head [28]. Hu et al. [24] train Mask
R-CNN with an amodal and visible mask head. In our work, we adapt this strategy to the
amodal VIS task. SAIL-VOS [24] is a synthetic dataset comprised of scenes from GTA
V and to our knowledge so far the only publicly available dataset that allows amodal VIS,
meaning that it does not only provide amodal and visible instance masks but also annotations
to track those throughout a video sequence. This is our reason for employing SAIL-VOS.
While amodal instance segmentation can already provide valuable amodal masks for single
images, they lack temporal context, which is, however, crucial to resolve total occlusions.
Video instance segmentation: The VIS task was introduced by Yang et al. [50], who ex-
tended the Mask R-CNN by a tracking head to MaskTrack R-CNN. Many VIS methods
built upon their work, mainly differing in tracking [27, 38]. Here, we build upon the tracking
methods of [38, 50] for amodal VIS. For more information, we refer to surveys [20, 57].

While SAIL-VOS [24] is the first dataset to enable amodal VIS, all methods evaluated on
this dataset are so far purely image-based. Yao et al. [51] concurrently developed a method
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for self-supervised amodal VIS, which is not end-to-end trainable, but takes as input the
current frame, optical flow and visible instance masks to predict the amodal masks. The
dependence on the visible masks means that this method also cannot predict the amodal
mask for video frame xt in Fig. 1. In contrast, we propose VATrack for end-to-end amodal
VIS that, given only a video sequence provides both the visible and amodal instance masks.
Additionally, we report results on a more comprehensive video level as well as image level,
while in [51] only image-level results are supplied.

3 New Amodal Video Instance Segmentation
For amodal VIS, we build upon an instance segmentation (blue in Fig. 2). This can be
extended by a tracking method (+green) to perform VIS, see Fig. 2. We investigate two types
of tracking methods, the MaskTrack R-CNN [50] and the QDTrack [38] method. We first
explain the instance segmentation blocks and provide details of the tracking methods. Then,
we describe the additional amodal mask head (red block) for joint amodal and visible VIS
of our proposed VATrack, and outline the training approaches for amodal and visible VIS.

3.1 Instance Segmentation Prediction
Fig. 2 shows the inference for our proposed visible and amodal VIS method VATrack. The
blue part corresponds to an instance segmentation prediction based on Mask R-CNN [22].
Input to our method in Fig. 2 is a normalized input frame xt ∈ [0,1]H×W×C of a video xT

1 ,
with H,W being the image height and width, C=3 the channel size, and frame indices t ∈
T = {1, . . . ,T} of the video of length T . The previous frames xt−1

1 have been processed by
the network consisting of a backbone, region proposal network (RPN) and region of interest
align (RoIAlign) to extract features fRoI

t,n of regions of interest (RoI) with n∈Nt ={1, . . . ,Nt}
being one instance ID out of the Nt uniquely observed instances until frame t. From these
features the instance segmentation prediction, consisting of class, bounding box and mask
head, predicts the class st,n ∈ S = {1, . . . ,S}, S being the number of instance classes, per
instance n ∈ Nt , the bounding box bt,n ∈ I2 with the set I = {(1,1), . . . ,(H,W )} of pixel
indices, and the corresponding instance mask mt,n ∈ {0,1}H×W . We denote the set of all
instances in video xT

1 as N = {1, . . . ,N}, with N being the number of unique instances in
the entire video sequence xT

1 , where Nt ⊂ N . The mask, bounding box and class head are
trained using the loss functions of Mask R-CNN [22].

3.2 Tracking Method
In Fig. 2, the instance segmentation (blue) is extended by a tracking method (+green). Dur-
ing inference, a memory storing instance features fn ∈Rh×w×c is updated throughout the
video, where h,w,c are the tracking-method-specific height, width, and channel number of
the instance features extracted in the tracking head. Instance ID n∈Nt ={1, . . . ,Nt} is one
out of Nt uniquely observed instances until frame index t. The memory at a current frame
index t stores instance features f1, . . . , fNt . The number of instances Nt at time index t is equal
to or smaller than the total number N of instances. Given a predicted instance of ID n, there
are two options: First the predicted instance is identified as an already known instance, i.e.,
n∈{1, . . . ,Nt}. Then, the feature vector ft,n updates the instance feature vector fn← ft,n of
instance n in the memory. Second, ID n is assigned as n=Nt +1, i.e., a new instance. In this
case, new instance features fNt+1← ft,n are saved in the instance memory. Afterwards, both
Nt←Nt +1 and Nt←Nt∪{n} are updated. When the final video frame xT is processed by
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the network, Nt =N contains all unique instances N of the video sequence2 xT
1 .

For the MaskTrack R-CNN [50] tracking method, a Softmax-based probability is cal-
culated given the current RoI features fRoI

t,n and the memory instance features f1, . . . , fNt for
assigning a known instance ID n ∈ Nt or a new instance ID n=Nt+1 to the features of
a predicted instance. For the QDTrack [38] method, in the tracking head in Fig. 2, a bi-
directional Softmax is applied to identify instance proposals fRoI

t,n with the memory instance
features f1, . . . , fNt , resulting in a known instance ID n ∈Nt or a new instance ID n=Nt+1.

3.3 Amodal Mask Prediction
The proposed joint prediction of visible and amodal VIS of VATrack is shown in Fig. 2.
Now we describe the amodal mask prediction. The amodal mask head has the same archi-
tecture as the (visible) mask head, taking as input the RoI features fRoI

t,n for predicted instance
n at frame index t and predicting the amodal mask at,n ∈ {0,1}H×W . The amodal mask head
is trained with a cross-entropy loss Jamodal=JCE same as the visible mask head.

With the amodal mask head, the question arises whether the bounding box (bbox) head
should output the visible or the amodal bbox. In Fig. 2 this can be seen by the mixed col-
orization. Naturally, it is not possible to use the visible bounding boxes, as masks are only
predicted inside the bbox, hence making amodal mask prediction impossible. Per default, we
use only the amodal bbox for training. In the supplementary, we investigate whether using
only an amodal bbox head, or including an additional amodal bbox head is more beneficial.

3.4 Training Approaches
Separate training: Here, we omit the amodal mask head of the VATrack framework in
Fig. 2. When training with just one mask head, the total loss is given as,

Jseparate = JRPN + Jbbox + Jcls + Jmask + Jtrack, (1)

where JRPN is the RPN loss, Jbbox is the bbox head loss, and Jcls is the class head loss. The
mask head is trained using the cross-entropy loss Jmask=JCE.

The ground truth input to the loss functions depends on whether we train on the visible
or on the amodal masks. If the method is trained on the visible masks mt,n, we refer to it
by the name of the tracking approach. If the amodal masks at,n are used, we refer to it as
AmodalTrack, which can be either MT- or QD-based, depending on the tracking method.

To learn meaningful embeddings of the memory instance features f1, . . . , fNτ
, those fea-

tures are also extracted from a reference frame xτ ∈ [0,1]H×W×C, where τ is selected from
the range τ∈{t−∆t, . . . , t +∆t}. Typically ∆t is chosen such that this interval allows for
instances to appear in both frames, so similar representations can be learned for them. Nat-
urally, we need a video length T ≥ 2 for this training approach. Then, both the RoI features
from the input frame xt and from the reference frame xτ are fed into the tracking head to
produce feature embeddings ft,n, fτ,n∈Rh×w×c per proposed instance n.

The tracking loss Jtrack depends on the chosen tracking method. For the MaskTrack
R-CNN tracking method, Jtrack is also a cross-entropy loss calculated between the ground
truth instance ID n and the tracking branch’s predicted probability that the extracted features
ft,n belong to the already known instances with memory features f1, . . . , fNt (extracted from
the ground truth instances of the reference frame xτ in training), or to a new instance [50].

2Note that in practice, the instance feature memory would be restricted by the available hardware. This is
relevant, e.g., if an instance vanishes from the field of view. Its features are stored in memory until the memory’s
limit is reached. Then features of the instance with longest absence would be discarded. Such limitations are
typically disregarded in (amodal) VIS research [38, 50, 51].
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For the QDTrack tracking method, quasi-dense similarity learning leads to Jtrack =
Jemb +λJaux: A contrastive loss Jemb between the feature embeddings of the RoI features of
the reference and input frame is used to learn the feature embedding of the tracking branch
so that for the same instance n from the input and the reference frame, feature embeddings
ft,n, fτ,n are encouraged to be close to each other, while the embeddings of different instances
are encouraged to be far away from each other, for details see [38]. An auxiliary loss term
Jaux between the same feature embeddings is needed to stabilize the training of the tracking
branch of QDTrack. We refer to [38] and [50] for details about the losses and the more
detailed operation of the two VIS methods and their respective tracking branches.
Joint training (VATrack): The amodal mask head is also trained using the cross-entropy
loss Jmask = JCE. To distinguish between the heads, we use the notation Jvisible or Jamodal.
While in the separate training case, the loss term Jmask has a weight of 1.0 in (1), we found
that if we incorporate a second mask head, results differ depending on the weighting of
both loss terms. Instead we weigh with pre-selected hyperparameters λ1, λ2 and report an
ablation study in the supplementary. Thus we obtain the total loss for joint training by

Jjoint =JRPN + Jbbox + Jcls + Jtrack

+λ1 · Jvisible +λ2 · Jamodal,
(2)

where we distinguish the loss terms of the visible (Jvisible) and the amodal (Jamodal) mask
prediction, even though they denote the same loss function and just differ in their targets.

The bbox loss Jbbox is trained using the amodal ground truth bbox bt,n. As the mask
is predicted inside the bbox, this allows to also learn the prediction of the visible instance
masks since the amodal bbox is at least the same size of the visible bbox. For an ablation
using two bbox heads in the supplementary, we also have two loss terms for each bbox head,
i.e., Jbbox

amodal and Jbbox
visible, which we each weigh for simplicity by the canonical value of 1.0.

We use the visible ground truth mt,n to train the (visible) mask head, and the amodal
ground truth at,n to train the amodal mask head. The ground truth for the tracking head and
the class head are not affected by the visibility of an instance, as neither the instance ID n
nor its instance class change depending on the visibility of the instance in a frame xt .

4 Experimental Evaluation and Discussion
In the following, we provide a description of our used datasets and metrics. Afterwards, we
provide an image-level and video-level evaluation including a state-of-the-art comparison.

4.1 Dataset
We use the SAIL-VOS dataset [24]. To our knowledge, it is up to date the only available
dataset providing amodal VIS labels. The amodal ground truth in SAIL-VOS is obtained
from the underlying game engine by specifically toggling the visibility of all objects in a
scene on and off [24]. The dataset contains 201 videos split into training data (160 videos),
and validation data (41 videos). The frames have a resolution of 1280× 800. While the
dataset has 162 annotated instance classes, experiments typically consider a fixed subset of
S= 24 classes [24]. We aim to predict the correct class and mask per instance, using the
same evaluation setup as Hu et al. [24], whose method also serves as a baseline. For more
details on the SAIL-VOS dataset, we refer to [24].

The SAIL-VOS dataset contains videos with jump cuts. Tracking is one of the core
methods within VIS, but naturally does not work across jump cuts. Accordingly, we also
investigate on a derivative of SAIL-VOS for training and evaluation, which we term SAIL-
VOS-cut. During training on the SAIL-VOS data, we observe loss irregularities whenever
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Method Backbone V A TC AP AP50 APP
50 APH

50 APL
50 APM

50 APS
50

MaskAmodal [24] ? ✓ 13.0 23.0 24.3 16.7 36.6 21.5 6.1
MaskJoint [24] ? ✓ ✓ 14.1 24.8 24.3 18.9 37.8 21.5 5.7
MaskAmodal∗ RX-101 ✓ 16.3 25.6 27.4 17.1 35.2 24.2 10.1

im
ag

e-
ba

se
d

MaskJoint ∗ RX-101 ✓ ✓ 16.7 25.6 26.9 17.3 33.0 22.3 9.0
AmodalTrack (MT-based) RX-101 ✓ ✓ 15.9 25.7 24.9 17.8 36.8 22.8 11.2
Ours: VATrack (MT-based) RX-101 ✓ ✓ ✓ 16.4 26.0 24.9 18.0 38.6 22.5 10.6
AmodalTrack (QD-based) RX-101 ✓ ✓ 17.8 27.4 29.2 18.6 34.7 26.8 11.4

vi
de

o-
ba

se
d

Ours: VATrack (QD-based) RX-101 ✓ ✓ ✓ 18.3 28.6 29.7 20.1 38.1 26.9 15.7
Table 1: Amodal instance segmentation image-level performance (%) on validation data for image-
based methods (blue, results on SAIL-VOS = SAIL-VOS-cut dataset), and for video-based methods
(orange, results on SAIL-VOS-cut dataset). Marker ∗ denotes resimulated results. Checkmarks in-
dicate whether the method predicts visible (V) and/or amodal (A) masks. The video-based methods
take temporal context (TC) into account, shown by checkmarks. Results have been produced using the
ResNext-101 (RX-101) backbone, Hu et al. [24] do not report their backbone (marked by: ?). Best
results are in bold, second best are underlined.

Method Backbone V A TC AP AP50 APP
50 APH

50 APL
50 APM

50 APS
50

Mask R-CNN[24] ? ✓ 14.3 24.1 24.7 17.2 42.8 21.3 4.9
MaskJoint[24] ? ✓ ✓ 14.2 24.5 24.1 17.6 38.9 21.0 5.1
Mask R-CNN∗ RX-101 ✓ 16.1 25.8 26.9 16.5 37.5 25.1 11.2

im
ag

e-
ba

se
d

MaskJoint∗ RX-101 ✓ ✓ 15.9 25.1 26.3 16.0 36.6 23.9 8.3
MaskTrack R-CNN[50] ◦ RX-101 ✓ ✓ 15.3 24.3 23.3 17.0 39.3 23.7 9.0
Ours: VATrack (MT-based) RX-101 ✓ ✓ ✓ 15.9 25.7 24.4 16.9 41.0 24.9 9.7

QDTrack[38]◦ RX-101 ✓ ✓ 17.0 27.1 27.7 18.2 37.2 26.1 12.6

vi
de

o-
ba

se
d

Ours: VATrack (QD-based) RX-101 ✓ ✓ ✓ 17.3 27.9 29.1 18.3 38.6 28.9 12.7
Table 2: Visible instance segmentation image-level performance (%) on validation data for image-
based methods (blue, results on SAIL-VOS = SAIL-VOS-cut dataset), and for video-based methods
(orange, results on SAIL-VOS-cut dataset). Marker ∗ denotes resimulated results. Marker ◦ denotes
results by adapting the VIS method to the SAIL-VOS-cut dataset. Checkmarks indicate whether the
method predicts visible (V) and/or amodal (A) masks. The video-based methods take temporal context
(TC) into account, shown by checkmarks. Results have been produced using the ResNext-101
(RX-101) backbone, Hu et al. [24] do not report their backbone (marked by: ?). Best results are in
bold, second best are underlined.

there is a jump cut between the key frame and the reference frame. Hence, SAIL-VOS-cut
consists of shorter video clips from the original SAIL-VOS dataset starting and ending at
a jump cut. Jump cuts are identified by an automatic algorithm. This does neither change
content nor size of the dataset, but just the video file composition. We report results of
all video-based methods on SAIL-VOS-cut, which, due to the design of SAIL-VOS-cut,
can be compared to image-based methods. This is because for image-based methods, there
is no difference between SAIL-VOS and SAIL-VOS-cut in training and evaluation. For
completeness, results on SAIL-VOS of our proposed video evaluation are reported in the
supplementary. SAIL-VOS-cut and the underlying generation scripts will be published to
ensure reproducibility. Note that as common in the (video) instance segmentation research
field, all datasets are split in disjoint training and validation datasets, the latter being used for
evaluation [14, 16, 24, 26, 27, 40, 49, 50, 56].

4.2 Metrics
We report metrics on image and video level. As previous methods only evaluate image-
based amodal instance segmentation, comparison to the state of the art is only possible with
image-level metrics. The supplementary contains a mathematical description of the metrics.
Image level: For image-level evaluation, we use the proposed metrics for SAIL-VOS [24],
i.e., average precision (AP) and AP at IoU threshold 50% (AP50). We also distinguish be-
tween large (APL

50), medium (APM
50), and small (APS

50) objects, heavily (APH
50) and partially

(APP
50) occluded objects. We also report the visible and the amodal set of AP metrics.
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Method Backbone V A vAP vAP50 vAPP
50 vAPH

50 vAPL
50 vAPM

50 vAPS
50

AmodalTrack (MT-based) RX-101 ✓ 2.4 3.1 3.8 1.7 3.8 1.4 0.4
Ours: VATrack (MT-based) RX-101 ✓ ✓ 2.3 3.1 3.8 1.7 3.7 1.5 0.3
AmodalTrack (QD-based) RX-101 ✓ 13.1 20.5 21.0 10.7 29.4 14.7 8.9
Ours: VATrack (QD-based) RX-101 ✓ ✓ 14.1 22.3 22.0 12.8 32.8 15.6 8.8

Table 3: Amodal instance segmentation video-level performance (%) on the SAIL-VOS-cut validation
set. Checkmarks indicate whether the method predicts visible (V) and/or amodal (A) masks. Results
have been produced using the ResNext-101 (RX-101) backbone. Best results are in bold, second
best are underlined.

Method Backbone V A vAP vAP50 vAPP
50 vAPH

50 vAPL
50 vAPM

50 vAPS
50

MaskTrack R-CNN [50]◦ RX-101 ✓ 2.5 3.2 3.8 1.9 4.5 1.7 0.3
Ours: VATrack (MT-based) RX-101 ✓ ✓ 2.3 3.1 3.8 1.6 4.4 1.4 0.3

QDTrack [38]◦ RX-101 ✓ 13.0 22.4 21.2 14.3 40.6 19.0 9.1
Ours: VATrack (QD-based) RX-101 ✓ ✓ 14.0 23.0 21.9 14.6 36.4 21.5 8.6

Table 4: Visible instance segmentation video-level performance (%) on the SAIL-VOS-cut validation
set. Marker ◦ denotes results by adapting the VIS method to the SAIL-VOS-cut dataset. Checkmarks
indicate whether the method predicts visible (V) and/or amodal (A) masks. Results have been produced
using the ResNext-101 (RX-101) backbone. Best results are in bold, second best are underlined.

Video level: For video evaluation, we use the standard metrics from VIS literature [27,
47, 50]: video average precision (vAP) and video average precision at IoU threshold 50%
(vAP50). Here, instance predictions are considered over the entire video. More precisely,
without sufficient overlap of all predicted masks of an instance with the ground truth in a
video, its prediction is not counted as correct. Naturally, high vAP is harder to achieve. For
video evaluation we differentiate again between large (APL

50), medium (APM
50), and small

(APS
50) objects, as well as heavily (APH

50) and partially (APP
50) occluded objects [24].

4.3 Image-Level Evaluation Results
Here, we report image-level results for amodal (Tab. 1) and visible (Tab. 2) instance segmen-
tation, comparing our results to the state of the art on the SAIL-VOS validation data [24].
All methods are trained for 12 epochs on an NVIDIA A100 GPU, while adopting hyperpa-
rameters from prior art [11, 15, 38, 50] without further tuning. We set λ1 = λ2 = 1.0 in (2)
as it is the standard in mmdetection [11] and mmtracking [15]. An ablation on the loss
weights as well as details on training and implementation can be found in the supplementary.
In Tab. 1 and 2, we distinguish between the blue-highlighted image-based methods (results
on SAIL-VOS = SAIL-VOS-cut dataset) and the orange-highlighted video-based methods
(results on SAIL-VOS-cut dataset), reporting results for the images of the SAIL-VOS vali-
dation dataset, taking into account the temporal context preventing jump cuts.
Amodal instance segmentation: Tab. 1 reports the amodal instance segmentation image-
level performance. We report the image-based state-of-the-art results from Hu et al. [24] for
MaskAmodal and MaskJoint. MaskAmodal is Mask R-CNN predicting only amodal
masks, while MaskJoint is a Mask R-CNN with an additional amodal mask head to pre-
dict both mask types. We report our resimulated results for both methods (∗ in Tab. 1, 2).
Hu et al. [24] did not report their backbone. For fair comparison, we chose ResNext-101.
We denote the separately trained methods (loss (1)) predicting only the amodal masks in the
notation of [24]: AmodalTrack MT-based and QD-based, distinguishing the two tracking
methods, i.e., MaskTrack R-CNN (MT-based) and QDTrack (QD-based) tracking meth-
ods. The MT-based AmodalTrack performs better than the image-based methods in four
of seven metrics (e.g., AP50=25.7% vs. current SOTA 25.6% and APL

50=36.8% vs. current
SOTA 35.2%) showing the value of video-based tracking for amodal instance segmenta-
tion. Due to the improved tracking method, QD-based AmodalTrack outperforms the MT-
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based one in almost all metrics, additionally outperforming the best image-based method
MaskJoint∗, where AP (AP50) improves by 1.1% (1.8%) absolute.

Finally, still in Tab. 1, VATrack yields further improvements to AmodalTrack. While
the MT-based VATrack improves four metrics, QD-based VATrack outperforms its corre-
sponding AmodalTrack in all metrics. QD-based VATrack provides strongest results over
all image-based and video-based methods, with an AP of 18.3% (MaskJoint∗: 16.7%) and
an AP50 of 28.6% (25.6%), showing the benefit of joint training and video-based tracking.
MT-based VATrack performs slightly better than the QD-based VATrack in APL

50, likely
due to the better results of the MT-based AmodalTrack.
Visible instance segmentation: Results for the image-level visible evaluation are shown in
Tab. 2. Instead of the AmodalMask method, we report results of the image-based method
Mask R-CNN as well as the video-based methods MaskTrack R-CNN, and QDTrack
for visible segmentation. When comparing the video-based MaskTrack R-CNN to the
image-based baselines (top four rows in Tab. 2), we observe that MaskTrack R-CNN
only achieves similar results as some metrics are improved while others are slightly worse.
Interestingly, this is in contrast to the amodal results in Tab. 1, where we observed clearer
improvements by its amodal counterpart MT-based AmodalTrack. We believe that a rea-
son for this result is that the temporal context has much more value for guidance w.r.t. oc-
cluded instances when predicting amodal masks than for the prediction of visible masks.
Another reason might also be the known trade-off between segmentation and tracking per-
formance [40]. QDTrack outperforms the MaskTrack R-CNN in most metrics due to the
improved tracking head and also surpasses the image-based baselines.

Another important observation from Tab. 2 is that the additional prediction of amodal
masks in our joint training with VATrack also benefits the visible instance segmenta-
tion. More specifically, MT-based VATrack outperforms MaskTrack R-CNN in all but
one metric. Also, we observe that the video-based QD-based VATrack as our best (pro-
posed) method improves upon the QDTrack results in all metrics and, additionally, outper-
forms the image-based baselines in almost all metrics, e.g., AP of 17.3% vs. 16.1% (Mask
R-CNN∗). Most notably, the VATrack performance for partially (and heavily) occluded
objects reaches 29.1% (18.3%) in APP

50 (APH
50), exhibiting a strong improvement. The QD-

based VATrack method outperforms the image-based state of the art on the SAIL-VOS-cut
validation set in all metrics in the image-level amodal evaluation, while providing competi-
tive image-level visible performance leading in almost all metrics.

4.4 Video-Level Evaluation Results
In this section, we report results on video level for amodal and visible VIS. Here, we cannot
present results for single-image approaches, i.e., methods in blue in Tab. 1, 2.
Amodal VIS: Tab. 3 shows the amodal video-level results. MT-based VATrack performs
similar to the MT-based AmodalTrack, with quite low performance in both cases due to
the more challenging video-level metrics. Further, we note a discrepancy between the results
of the MT-based and the QD-based methods, e.g., the vAP50 = 3.1% for MT-based VATrack
and MT-based AmodalTrack, while QD-based AmodalTrack achieves a vAP50 = 20.5%,
and QD-based VATrack even reaches 22.3% due to the improved tracking. Finally, we can
confirm the merit of joint training for amodal instance segmentation as QD-based VATrack
outperforms the QD-based AmodalTrack in six out of seven metrics.
Visible VIS: Tab. 4 shows the video-level visible results. We observe the same discrep-
ancy between the results of the MT-based methods and the QD-based ones, e.g., the vAP for
MaskTrack R-CNN (MT-based VATrack) is 2.5% (2.3%), while QDTrack (QD-based
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VATrack) achieves a vAP of 13.0% (14.0%). We can also confirm the value of joint amodal
and visible VIS training as both MT-based methods yield a similar performance, while the
QD-based VATrack again performs best in five out of seven metrics.

Interestingly, for both amodal and visible video-level evaluation, QD-based VATrack
improves performance compared to the respective AmodalTrack (QDTrack) on partially
occluded objects (vAPP

50) by 1.0% (0.7%) absolute, and for heavily occluded objects (vAPH
50)

by 2.1% (0.3%) absolute, which confirms our results in Tab. 1, 2. To summarize, our
VATrack methods achieve current state-of-the-art results in the video-based evaluation
on the SAIL-VOS-cut dataset and can be used for future reference.

5 Conclusions
In this work, we investigate the task of end-to-end amodal video instance segmentation (VIS)
on the SAIL-VOS dataset. Our VATrack method is based on the Mask R-CNN instance
segmentation in which we include an amodal mask head to predict amodal and visible masks
at the same time. Additionally, we adapt two different tracking heads from VIS methods. The
resulting AmodalTrack methods already perform competitively with the state of the art on
the SAIL-VOS dataset. However, the proposed end-to-end QD-based VATrack outperforms
the current state of the art on all amodal metrics (e.g., AP50 = 28.6% vs. 25.6%), while also
improving almost all visible metrics as well (e.g., AP=17.3% vs. 16.1%). Finally, we report
not only the image-wise metrics on the SAIL-VOS dataset, but also video-based metrics,
which can be used as a novel reference to further advance research in amodal VIS.
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funded by the German Federal Ministry for Economic Affairs and Climate Action (BMWK).
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