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Abstract

Previous one-stage action detection approaches have modelled temporal dependen-
cies using only the visual modality. In this paper, we explore different strategies to
incorporate the audio modality, using multi-scale cross-attention to fuse the two modal-
ities. We also demonstrate the correlation between the distance from the timestep to
the action centre and the accuracy of the predicted boundaries. Thus, we propose a
novel network head to estimate the closeness of timesteps to the action centre, which we
call the centricity score. This leads to increased confidence for proposals that exhibit
more precise boundaries. Our method can be integrated with other one-stage anchor-free
architectures and we demonstrate this on three recent baselines on the EPIC-Kitchens-
100 action detection benchmark where we achieve state-of-the-art performance. De-
tailed ablation studies showcase the benefits of fusing audio and our proposed centricity
scores. Code and models for our proposed method are publicly available at https:
//github.com/hanielwang/Audio-Visual-TAD.git.

1 Introduction
Temporal action detection aims to predict the boundaries of action segments from a long
untrimmed video and classify the actions, as a fundamental step towards video understanding
[6, 10, 44]. A typical challenging scenario is in unscripted actions in egocentric videos
[9, 12] which contain dense action segments of various lengths in an unedited video, ranging
from seconds to minutes.

Most recently, a few have approached egocentric action detection by modelling their
long-range visual dependencies with transformers [33, 35, 39, 42, 43, 49]. However, only
using visual information, means a missed opportunity to exploit potentially meaningful aural
action cues. As shown in Figure 1(a), sound exhibits discriminating characteristics around
the starting point of actions, such as ‘open drawer’, ‘take spoon’ and ‘scoop yoghurt’, which
can be useful for boundary regression. Also for action classification, the sound of flowing
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(a) (b)
Figure 1: Our motivation – (a) Sounds help detect actions both in refining the action bound-
aries (regression) and in identifying the action within these boundaries (classification), (b)
Timesteps closer to the action center generate better proposals with high tIoU.

water can boost confidence in identifying an action as ‘turn-on tap’ rather than ‘turn-off
tap’, even though their visual content is similar. Unlike methods [17, 35, 41] that directly
fuse audio and visual modalities at the same scale through concatenation, addition or gating
modules, in this paper we learn these modalities with separate encoders and fuse their repre-
sentations using a cross-modal attention mechanism at different temporal scales. This allows
us to exploit sufficient audio-visual information to detect actions of various duration.

Recent one-stage anchor-free methods [39, 42, 49] operate on egocentric videos by si-
multaneously predicting boundaries and action categories for each timestep. In contrast to
anchor-based methods, anchor-free methods do not require pre-defined anchors to locate ac-
tions but directly generate one proposal for each timestep. We have observed that timesteps
near the centre of actions tend to produce proposals with more precise boundaries. These
proposals have higher temporal Intersection-over-Union (tIoU) values with corresponding
ground-truth segments. As shown in Figure 1(b), the closer the current timestep is to the
action centre, the greater the tIoU. Inspired by this observation, we introduce a centricity
head that predicts a score so as to indicate how close the current timestep is to the action
centre. This score is then integral to calculating the confidence scores for ranking candidate
proposals, where those with more precise boundaries will be ranked higher. Our approach
can be incorporated into most one-stage anchor-free action detectors and achieve significant
improvement.

In summary, our key contributions are as follows: (i) we introduce a framework to effec-
tively fuse audio and visual modalities using a cross-modal attention mechanism at various
temporal scales, (ii) we propose a novel centricity head to predict the degree of closeness of
each frame’s temporal distance to the action centre – this boosts a proposal’s confidence score
and allows for the preferential selection of proposals with more precise boundaries, and (iii)
we achieve state-of-the-art results on the EPIC-Kitchens-100 action detection benchmark,
demonstrating the effectiveness of audio modality and the benefits of centricity in improving
detection performance.

2 Related Work

Temporal action detection – Current temporal action detection methods can be divided
into: (i) two-stage methods that first generate proposals and then classify them, and (ii) one
stage methods that predict boundaries and corresponding classes simultaneously. Some two-
stage works generate proposals by estimating boundary probabilities [22, 25, 26, 40] and
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action-ness scores [50]. Many one-stage methods [11, 24, 28, 30, 47] rely on pre-defined
anchors to model temporal relations, which often leads to inflexibility and poor boundaries
when detecting actions with various lengths. To address this, recent anchor-free methods
[23, 48, 49] predict the action category and offsets to the boundaries simultaneously for
each timestep using parallel classification and regression heads. Then, candidate proposals
constructed by these predictions are filtered to obtain the final results. Our work follows such
an anchor-free pipeline.

Inspired by the DETR framework [5], some works input relational queries [38], learned
actions [29] or graph queries [33] to a transformer decoder to detect actions. However, with
a limited number of queries, these methods struggle to cover a large number of actions in
long videos. Alternatively, other works [7, 8, 39, 49] use multi-scale transformer encoders
[39, 49] to model temporal dependencies for stronger video representations. For example,
ActionFormer [49] applies local self-attention to extract a discriminative feature pyramid,
which is then used for classification and regression. Our work falls under this workflow.
Audio-visual learning – Sight and hearing are both vital sensory modes that assist humans
in perceiving the world. This can transfer to computational approaches too to learn models
from. Numerous works [1, 2, 3, 13, 19, 34] have focused on jointly learning audio and visual
representations for tasks such as action recognition [16, 17, 32], video parsing [31, 45] and
event localization [36, 41, 46]. Audio-visual event localization aims to classify each timestep
into a limited number of categories [41], relying on clear audio-visual signals and without the
need to predict temporal boundaries. In contrast, our action detection task aims to leverage
the audio-visual representation to detect temporal boundaries for dense actions with various
lengths and unclear audio cues, and then classify them into a wide range of categories. OWL
[35] attempts different strategies for fusing audio and visual modalities, but it fuses at a
single temporal scale only and classifies pre-generated proposals from [26], rather than detect
boundaries. In [20], the authors address this task by extracting intra-modal features, but their
proposed framework is designed for simple, weakly-labelled data with sparse actions per
video. Our work focuses on large-scale egocentric data comprising dense complex actions
of various durations, and we propose a framework to incorporate audio-visual learning and
centricity into one-stage anchor-free methods.

3 Method

We propose a novel framework for temporal action detection, rooted in audio-visual data,
which can be incorporated into one-stage anchor-free pipelines [23, 39, 42, 49] (see Figure
2). Similar to such temporal action detection works, we define the problem as follows. Given
an untrimmed video, we extract features for the video and audio modalities and then process
them using transformer encoders to obtain the visual and audio representation sequences
Fv = { f v

t }
T
t=1 and Fa = { f a

t }
T
t=1, respectively. Based on these, our approach is to learn to

predict a set of possible action instances Φ = {(s,e,α)m}M
m=1, where s and e represent the

starting and ending boundaries of an action, and α represents the predicted action class.

3.1 Audio-visual Fusion

In this section, we explore three different strategies to effectively utilise the audio modality
and combine it with visual information to improve action detection performance.
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Figure 2: An overview of our architecture – Given an untrimmed video, audio and visual fea-
tures are extracted from video clips, then fed into encoders Ea and Ev for generating audio
Fa and visual Fv feature pyramids. These are fused using cross-attention across N tempo-
ral scales to build the audio-visual representation Fav. This representation is passed to the
centricity head hC for centricity scores, and to prediction heads hv

b, hv
c, and ha

c for boundary,
classification, and audio scores respectively. Finally, predicted scores and boundaries are
used to construct candidate proposals, which are then filtered to obtain the final predictions.

Proposal fusion – In this strategy (see Figure 3 (a)), at first the visual and audio representa-
tions (Fv,Fa) are produced by encoders Ev and Ea respectively. Classification heads hv

c and
ha

c and regression heads hv
b and ha

b are then used to predict the classification scores (pv
t ,pa

t )
and boundaries (sv

t ,ev
t ) and (sa

t ,ea
t ) for the visual and audio modalities, respectively. Thus, we

can obtain a set of candidate proposals for the visual modality Φv = {(sv
t , ev

t , pv
t )}

T
t=1 and

similarly, a set of candidate proposals for the audio modality Φa = {(sa
t , ea

t , pa
t )}

T
t=1. Then,

we concatenate these two sets as Φo = {(sv
t , ev

t , pv
t ),(s

a
t , ea

t , pa
t )}

T
t=1.

Classification scores fusion – Although sounds can be associated with actions for classifi-
cation purposes, the duration of an action does not necessarily correspond to its audio start
and end as recently shown in [15]. Thus, we discard the audio boundaries, integrate the
classification scores from both visual and audio modalities, and then use them along with the
visual boundaries to generate proposals.

We use an approach similar to [35] to fuse visual and audio classification scores. Specif-
ically, as shown in Figure 3(b), based on Fv and Fa, the visual classification head hv

c, audio
classification head ha

c and visual boundary head hv
b predict scores pv

t and pa
t , and frame

boundaries sv
t and ev

t , respectively. We fuse the classification scores pv
t and pa

t by simple
addition and combine them with the visual boundaries sv

t and ev
t to construct the set of fused

candidate proposals Φc, such that Φc = {(sv
t , ev

t , pv
t + pa

t ))}
T
t=1.

Feature pyramid fusion – In this strategy (see Figure 3(c)), Fv and Fa are put through a
cross-attention mechanism [20, 35] (see also grey box of Figure 2) to model their inter-modal
dependencies which then results in a single representation vector Fav.

Firstly, Fv and Fa are projected into query Q = WQFv, key K = WKFa, and value V =
WV Fa, where Fv serves as a query input and Fa serves as key and value inputs. WQ, WK and
WV ∈ Rd×d are learnable weight matrices, where d is the embedding dimension. Next, we
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(a) (b) (c)

Figure 3: Three strategies for fusing modalities – (a) Proposal fusion: visual and audio
modalities are separately fed into their respective streams and generate corresponding sets
of proposals, which are directly concatenated to obtain the final set of proposals, (b) Clas-
sification scores fusion: classification scores from both modalities are combined alongside
boundaries from the video to obtain the final set of proposals, (c) Feature pyramid fusion:
feature pyramids from the two modalities are fused through cross-attention and fed into par-
allel heads to predict boundaries and class scores, which then construct the set of proposals.

calculate the audio-visual representation vector

Fav = so f tmax(
QKT
√

d
)V , (1)

which is then fed into a classification head hc and a regression head hb to obtain the clas-
sification scores pav

t and the boundaries sav
t , eav

t for each timestep. Therefore, the set of
candidate proposals is Φ f = {(sav

t , eav
t , pav

t ))}T
t=1.

We ablate these three strategies in Sec. 4.1. Based on the ablations, we chose feature
pyramid fusion to generate audio-visual representations across N temporal pyramid scales
for assessment by the centricity head to predict corresponding scores (see Sec. 3.2 next).
We also selected the classification scores fusion approach to generate stronger audio-visual
classification scores to predict action categories and calculate confidence scores.

3.2 Audio-visual Centricity Head
We investigated the relationship between the distance of a timestep from the action centre
and the tIoU value between its generated proposal and the ground truth. As shown in Figure
4(a), as a timestep gets closer to the action center, its generated proposal has a higher tIoU
value. This indicates that timesteps around the centre of an action can generate proposals
with more reliable action boundaries. Thus, we propose a simple, yet effective, centricity
head based on the audio-visual representation Fav to estimate how close the timestep t is to
the centre of the action (as shown in Figure 4 (b)). The centricity head consists of three 1D
conv layers with layer normalization and a ReLU activation function.
Label assignment – We require the centricity scores pC∗t calculated from ground-truth data
as supervision signals for training. For each timestep t, we consider the relative distance dt
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(a) (b)
Figure 4: The illustration of centricity – (a) The tIoUs between ground-truth and predictions
(from RAB [42]) is plotted across various centre distances. Actions are divided into five
groups based on segment lengths (in seconds): XS (0, 2], S (2, 4], M (4, 6], L (6, 8], and
XL (8, inf). (b) The centricity head takes in the audio-visual feature Fav and produces the
centricity scores pC

t . The ground-truth centricity score pC∗t is calculated based on the relative
distance dt between the time step t and the action center.

between the current timestep t and the centre of the corresponding ground-truth action to
map the training labels of centricity scores

pC∗t = exp
(
−(dt)

2/2σ
2) , (2)

where σ is a scaling hyperparameter which defines that the closer a timestep is to the action
centre, the higher the centricity score. This has previously been explored to predict boundary
confidences [21, 42], but not specifically for centricity use cases. The centricity scores are
normalized to a range of 0 to 1.
Training – We optimize the loss between the ground-truth pC∗t and the predicted centricity
scores pCt using Mean Square Error (MSE) loss as

LC =
1
T ′

T
′

∑
t
(pC∗t − pCt )

2 , (3)

where T
′
is the total number of timesteps used for training from all scales of the audio-visual

feature pyramid. Our method can be integrated into any one-stage anchor-free frameworks
and trained in an end-to-end manner. The total loss is Ltotal = Lg + λ1Lc + λ2Lb + λ3LC ,
where Lg and Lc are losses for regression [37] and classification [27] and are the same as in
[39, 42, 49]. Lb is the boundary confidence loss from [42]. λ1, λ2 and λ3 denote the loss
balancing weights, and λ3 is set to 0 when the baseline is ActionFormer [49] or TriDet [39].

3.3 Post-processing
For each timestep t, the network produces the visual and audio classification scores pv

t , pa
t ,

the corresponding action class label α , a centricity score pCt , and a pair of starting and ending
boundaries st , et with their corresponding boundary confidences ps

st and pe
et (with these con-

fidences computed as in [42]). The final confidence score for timestep t is then a weighted
combination of the learnt knowledge, i.e.

S = pv
t + τ pa

t +β pCt + γ(ps
st + pe

et ), (4)

where τ , β and γ are fusion weights, and γ is set to 0 when the baseline is ActionFormer[49]
or TriDet [39]. Finally, we follow standard practice [25, 26, 40, 49] to rank these candidate
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actions based on the final confidence score S and filter them using Soft-NMS [4] to obtain a
final set of M predictions Φ = {(s,e,α)m}M

m=1.

4 Experiments
Dataset – We conduct experiments on EPIC-Kitchens-100 [9], a large-scale audio-visual
dataset that contains 700 unscripted videos with 97 verb and 300 noun classes. On average,
there are 128 action instances per video, with significant overlap.
Evaluation metric – We use mean Average Precision (mAP) for verb, noun and action tasks
at various IoU thresholds {0.1, 0.2, 0.3, 0.4, 0.5} to evaluate our method against others.
Baselines – Our approach is integrated with three one-stage anchor-free approaches [39, 42,
49]. ActionFormer [49] is chosen as it is a pioneering anchor-free work that models long-
range temporal dependencies using the Transformer for action detection. TriDet [39] extends
this by incorporating scalable-granularity perception layers and a Trident head to regress
boundaries. Finally, Wang et al. [42] (hereafter RAB) introduces a method to estimate
boundary confidences through Gaussian scaling.
Implementation details – We compare our approach against state-of-the-art (SOTA) meth-
ods [9, 14, 26, 35, 39, 42, 49] for temporal action detection. For a fair comparison, we
employ the same visual features as [39, 42, 49], extracted from an action recognition model
[9] that is pre-trained with the SlowFast [10] network on EPIC-Kitchens-100. To obtain fea-
tures with a dimension of 1x2304, we have a window size of 32 and a stride of 16 frames.
For audio features, we generate 512×128 spectrograms using a window size of 2.6ms and a
stride of 1.3ms. These spectrograms are then fed into a SlowFast audio recognition model
[18], with features extracted after the average pooling layer with a dimension 1x2304.

Again, following [39, 42, 49], the feature pyramid generated by the transformer encoder
has N = 6 levels, with a level scaling factor of 2. For training, we use one Nvidia P100 GPU.
We crop the video features with various lengths to 2304. The loss balancing weights in Sec.
3.2 are λ1 = 1, λ2 = 0.5, and λ3 = 1.7. The weight ratio of the classification loss between
verb and noun is set to 2:3. The scaling hyperparameter in Eq. (2) is set to σ = 1.7. During
the inference stage, the confidence score weights in Sect. 3.3 are assigned as τ = 0.2, β = 1,
and γ = 0.7. For the multi-task classification, we select the top 11 verb and the top 33 noun
predictions to combine the candidate actions.
Main results – Table 1 shows that the proposed method outperforms recent SOTA ap-
proaches [9, 14, 26, 35, 39, 42, 49] on the EPIC-Kitchens-100 action detection benchmark,
and achieves significant improvements when added to existing SOTA one-stage multi-scale
methods [39, 42, 49]. ActionFormer [49] and TriDet [39] train different models for verb and
noun detection and do not detect actions. Instead, we train one model and add a multi-task
classification head to predict their results for the action task. It can be seen that our enhanced
proposed method with audio fusion and centricity improves performance in every metric. In
action detection, mAP improves by 1.35% and 0.97%, respectively. RAB [42] also performs
well on egocentric data and follows the same anchor-free pipeline as ours. The improvement
achieved on RAB[42] was 1.32% and is also the best result amongst the baselines.
Qualitative results – Qualitative plots of ‘RAB [42]+Ours’ on the EPIC-Kitchens-100 ac-
tion detection validation dataset are shown in Figure 5. The bottom two lines showcase
the model’s ability to detect dense actions with different classes and durations in a video,
demonstrating that our approach can effectively utilise the audio modality to learn discrim-
inative representations. The middle three lines show a zoomed-in, detailed look where it is
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Method Venue Feature Audio Avg. mAP@task
Verb Noun Action

BMN [9, 26] IJCV 2022 SF [10] × 8.36 6.53 5.21
OWL [35] ArXiv 2022 SF [10] ✓ 11.47 12.63 8.35
BMN+TSN [14, 26] ICLR 2022 TSN [44] × 13.47 12.37 9.71
BMN+TAda2D [14, 26] ICLR 2022 TAda2D [14] × 16.78 17.39 13.18
ActionFormer [49]∗ ECCV 2022 SF [10] × 20.45 20.90 16.63
ActionFormer [49]∗ + Ours - SF [10] ✓ 20.48 22.41 17.98
TriDet [39]∗ CVPR 2023 SF [10] × 20.87 21.04 17.21
TriDet [39]∗ + Ours - SF [10] ✓ 21.94 22.86 18.18
RAB [42] AVSS 2022 SF [10] × 20.71 20.53 17.18
RAB [42] + Ours - SF [10] ✓ 21.10 23.08 18.50

Table 1: Comparative results on the EPIC-Kitchens-100 action detection validation set –
∗Actionformer and TriDet only provide results on verb and noun detection, hence we produce
action results by modifying them with a multi-task action classification head [42].

Figure 5: Qualitative results on the EPIC-Kitchens-100 action detection dataset – The top
row shows the visual content of selected frames. The middle seven lines display the ground-
truth (GT), the predictions of RAB [42], RAB [42]+Ours, TriDet [39], TriDet [39]+Ours,
AF [49], AF [49]+ours for a zoomed-in region. The bottom seven lines represent the whole
video sequence. These results demonstrate the effectiveness of our method in accurately
detecting dense actions.

easier to see that our method better deals with challenging actions, e.g. see action ‘put fork’
in the 77th second of the first video and the action ‘wash hand’ in the 68th second of the
second video that were missed by the baseline model. This indicates that our centricity head
enhances the confidence scores for actions with more precise boundaries, resulting in their
preferential ranking and selection during the Soft-NMS processing.

4.1 Ablations

All our ablations use RAB [42] as baseline and are performed on EPIC-Kitchens-100 vali-
dation dataset [9].
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Baseline Audio Centri-
city

Avg. mAP@task
Verb Noun Action

ActionFormer [49] × × 20.45 20.90 16.63
ActionFormer [49] + Ours ✓ × 19.75 21.46 17.22
ActionFormer [49] + Ours × ✓ 21.50 22.25 17.60
ActionFormer [49] + Ours ✓ ✓ 20.48 22.41 17.98
TriDet [39] × × 20.87 21.04 17.21
TriDet [39] + Ours ✓ × 21.07 21.75 17.61
TriDet [39] + Ours × ✓ 21.65 21.23 17.42
TriDet [39] + Ours ✓ ✓ 21.94 22.86 18.18
RAB [42] × × 20.71 20.53 17.18
RAB [42] + Ours ✓ × 20.93 21.84 17.88
RAB [42] + Ours × ✓ 21.47 21.43 17.69
RAB [42] + Ours ✓ ✓ 21.10 23.08 18.50

Table 2: Components analysis on the EPIC-Kitchens-100 action detection validation set.

Classification
Weight λ1

Avg. mAP@task
Verb Noun Action

0.5 22.04 22.70 18.22
1 21.10 23.08 18.50
2 22.13 22.52 18.01
4 22.36 22.11 18.09
6 22.21 22.75 17.83
8 22.20 22.92 17.83

Table 3: Ablation on varying classifica-
tion weight λ1.

Figure 6: Effect of centricity on confidence
scores (see text for details).

Components ablation – We ablate the contributions of our two main components, audio-
visual fusion and centricity head, as seen in Table 2. Both components demonstrate notable
improvements in the performance of the baseline methods [39, 42, 49], particularly when
they are engaged, singularly or in combination, for action detection.
Loss function weights – We train our network in an end-to-end manner by minimizing the
total loss function in Sec. 3.2, where we assign three weights to balance various losses. Table
3 shows that λ1 = 1 is the best value for performing the action task for the classification loss
Lc weight, across the improvements made to the baseline. For the boundary confidence loss
Lb weight λ2, we follow the baseline RAB’s recommended setting [42]. Finally, Table 4
demonstrates that our results are relatively stable when varying centricity loss LC weight λ3
between 0.5−2, with the best action detection result at λ3 = 1.7.
The effect of centricity on confidence score – Figure 6 shows that as the centre distance
increases, the average tIoU values (blue bars) between the ground truth and the proposals
generated by timesteps at the centre distance present a notable decreasing trend (↓0.16).
However, the original confidence scores (dashed blue line) only slightly decreases (↓0.03).
Adding centricity into the confidence scores (solid blue line) responds better to the expected
trend (↓0.09). Thus, proposals with more accurate boundaries (higher tIoU values) rank
higher based on their confidence scores when centricity is incorporated.
Audio-visual fusion strategies – The three strategies for fusing audio and visual modalities
(see Section 3.1) are compared in Table 5. The proposal fusion strategy has the lowest
overall action detection performance due to the audio stream’s proposals having less precise
boundaries. The audio-visual fusion of classification scores strategy improves on Visual-only
through multiplication (↑0.19%) or addition (↑0.51%). For the feature pyramid fusion, while
a direct concatenation achieves a relative increase (↑0.27%), the cross-attention mechanism
provides a more significant learning opportunity (↑0.70%).
Centricity vs. action-ness – Centricity establishes how close the current timestep is from
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Centricity
Weight λ3

Avg. mAP@task
Verb Noun Action

0.5 21.18 22.82 18.04
1 21.19 22.02 18.11

1.5 21.23 23.24 18.24
1.6 21.71 22.89 18.16
1.7 21.10 23.08 18.50
1.8 21.16 22.77 18.13
2 21.27 22.90 18.22

Table 4: Ablation on varying
centricity weight λ3.

Fusion Strategies Avg. mAP@task
Verb Noun Action

Visual-only 20.71 20.53 17.18
Audio-only 7.94 6.41 4.57
Proposals fusion (Figure 3 (a)) 20.36 20.38 16.65
Classif. scores fusion (multiplication) (Fig 3(b)) 20.93 21.82 17.37
Classif. scores fusion (addition) (Fig 3(b)) 20.18 21.89 17.69
Feature pyramid fusion (concatenation) (Fig 3(c)) 20.95 21.52 17.45
Feature pyramid fusion (cross-attention) (Fig 3(c)) 20.93 21.84 17.88

Table 5: Comparing different strategies to fuse audio & visual
modalities.

(a) (b) (c) (d)

Figure 7: Visualization examples of tIoU values, and centricity and action-ness scores –
The x-axis represents the re-scaling of the temporal dimension of an action segment to the
range of [0− 1]. The bars represent the average tIoU between the proposals generated by
corresponding timesteps and their ground truth. The green and purple lines are the centricity
and action-ness scores, respectively.

the action centre, while action-ness [7] represents the probability of the action occurring.
Figure 7 displays individual instances of actions with centricity scores, action-ness scores
and the average tIoUs between the proposals generated by corresponding timesteps and their
ground truth. In the middle of the action, timesteps tend to exhibit peak values of tIoUs that
gradually decrease on both sides, and a similar trend is also observed in the centricity scores.
This suggests that timesteps associated with higher centricity scores are inclined to generate
proposals with more precise boundaries. In contrast, the action-ness scores (purple line) tend
to drop in the middle of the action.

5 Conclusion
We introduced an audio-visual fusion approach and a novel centricity head for one-stage
anchor-free action detectors. Our method achieves state-of-the-art results on the large-scale
egocentric EPIC-Kitchens-100 action detection benchmark where audio and video streams
are available. Detailed ablations demonstrated the benefits of fusing audio and visual modal-
ities and emphasized the importance of centricity scores.

Many questions about the use of multi-modalities in temporal action detection remain
unexplored, such as the discrepancies in the training data and the temporal misalignment
between different modalities. An extension of our work would involve joint learning from
visual, audio, and language modalities to enhance action detection performance, with spe-
cific focus on mitigating the misalignment among these three modalities and developing
novel fusion techniques to provide discriminative representations.
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