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Abstract

Animal detection is a critical component of behavioural research in animal sciences.
Improvement in detection accuracy along with model efficiency is essential for good re-
sults in animal phenotyping. Collecting data on a farm is easy, but labelling the data
is tedious. Therefore, most current methods rely on limited training data, which is a
restrictive factor for achieving optimal results. Recently, self-supervised learning meth-
ods leveraging unlabelled data have been shown to produce improved accuracy on ex-
tensive detection benchmarks. In this work, we proposed a self-supervised animal de-
tection pipeline for animals in a constrained environment. The proposed pipeline em-
ploys a modified version of Barlow Twins in its pre-training stage. It is tested on a
specially created dataset with labelled images along with unlabelled images for self-
supervised learning. With our proposed pipeline, we achieved a boost in mAP across
various thresholds without compromising the efficiency of the detection models and
having a high FPS video output even on non-industrial-grade GPUs, making it suit-
able for online tracking applications. The link to our code is publically available at
https://github.com/FayazRahman/barlow-effdet.

© 2023. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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1 Introduction

Animals rely on body posture and sound to express themselves. Therefore, Animal-Computer
Interaction studies are making a significant effort to develop technology for automatically
recognising animal behaviour and body postures [16]. The ability to process videos of small
animals and automatically score their behaviour [2] is crucial for several common tasks in
the life sciences, such as measuring the locomotive activity of an animal, defining its posi-
tion in an arena, quantifying its interactions with an object, or assessing its engagement in
defensive behaviours like freezing [15]. To improve farm products while complying with
animal welfare regulations, breeding companies aim to leverage vision-based solutions to
monitor animal living and conceive novel animal traits that can enhance breeding programs.

Object detection is a critical component of animal behaviour analysis frameworks by
means of tracking [3, 7, 17]. Recently, there has been huge progress in object detection
models, giving high accuracy results such as YOLO [18] and FasterRCNN [20], but many
of these methods trade-off model efficiency for better results. However, model efficiency
is essential for behaviour analysis, which requires fast results. Most of the earlier work
in this area mainly relies on a fully supervised learning paradigm. For example, PigPose
[10] proposed keypoint detection in its framework for animal pose estimation and tracking.
Similarly, Zhang et al. [28] introduced a hierarchical pig detection and correlation-based
tracking.

Compared to fully supervised learning, there has been a growing interest in semi-supervised
and self-supervised object detection algorithms that leverage unlabelled data to improve de-
tection performance [0, 7, 23, 25, 26]. Inspired by self-learning, we developed a pipeline that
increased detection accuracy without compromising model efficiency. Primarily, we incor-
porated a modified version of the Barlow Twin’s methodology [27] to pre-train the smaller
EfficientDet detectors - variants DO and D1 [22], on unlabelled data. In a nutshell, the con-
tributions of our work are two-fold:

* A self-supervised training methodology that improves animal detection accuracy in a
constrained environment.

* A well-curated, unique dataset collected from a pig farm.

The rest of the paper is organized in the following order. In section 2, the description of
the proposed method is given. The dataset details, performance metrics, and implementation
details are given in section 3. Section 4 lists the quantitative and qualitative results. The
discussion and final remarks are given in section 5 that concludes the paper.

2 Methodology

Our proposed model consists of two training phases. The first phase involves pre-training the
object detector using unlabelled data, and the second phase involves training it using labelled
data. The graphical depiction of our proposed model and training methodology is shown in
(Fig. 1). The model consists of two sister branches, as in a Siamese neural network [24].
In each branch, the first component is the object detection model, followed by a projector
network. The projector network produces feature embeddings that are used to optimize the
weights of the backbone object detector. In the following subsections, each component is
briefly explained.
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Figure 1: Self-learning architecture of our detection model. Pre-training with our modified
Barlow Twins method is depicted at the top. The resulting detector model, then trained with
labelled data, is depicted at the bottom.

2.1 Object detector architecture

We used EfficientDet-DO0 as our base model for animal detection [22]; however, the method-
ology can be tuned for any generic object detector. It consists of an ImageNet pre-trained
EfficientNet-BO convolution neural network as its backbone network [21] and makes use of
a feature pyramid network, namely BiFPN [21], which is equipped with cross-scale con-
nections similar to PANet [14]. BiFPN applies repeated feature fusion of the bidirectional
connections using Fast Normalized Fusion given by (Eq. 1):

Wi
o=y ————1I ey
),:’ E+Ljw,

where w; is a learnable weight, /; is the input feature vector and € = 10~ is a constant to
avoid numerical instability. The fast normalized fusion is then applied on features from lev-
els 3 to 7 of the backbone network to obtain five output features [22]. The extracted features
are fed into a class and box prediction network to predict boxes and their corresponding
confidence scores. The final boxes are filtered by application of Soft-NMS [4]. Soft-NMS
chooses the box with the highest confidence score, and the confidence scores of boxes over-
lapping with the chosen box are decreased by (Eq. 2):

—IoU (M,b;)?

§; = §;e ° ,Vbi ¢ D (2)

where M is the bounding box with the maximum confidence score, D is the set of selected
final boxes, s; is the score of the box b;, and ¢ is a hyperparameter to control the decay of
scores. loU (M, b;) refers to the ratio of the area of intersection to the area of union between
the boxes M and b;.
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2.2 Self-supervised pre-training of detector

Contrary to direct training using labelled data as in a fully supervised learning paradigm,
we pre-train the object detection model on unlabelled data using a modified Barlow twins
strategy [27]. We apply the method on a condensed representation of the output of the
Feature Pyramid Network of the EfficientDet network instead of the detector’s backbone.
This method aims to learn features invariant to distortions applied to the sample. In other
words, it aims to find a representation that conserves information about the sample while
being least informative about the specific distortions applied.

2.2.1 Pre-training architecture:

The self-supervised training involves passing two different variants of the input image to
two identical networks. The distorted version of images is generated by applying random
augmentation. The networks consist of:

1. EfficientDet network without the final classification and box prediction layers (Sec-
tion. 2.1).

2. Projection Network: In the projection network, we apply global average pooling on
the multi-scale representations obtained from the Bi-FPN layer of the detector and
sum the results. This is followed by two linear layers with a batch normalization layer
and ReLU activation in between. Thus, we obtain the embeddings from the projection
network, which is fed into the loss function.

3. Barlow Twins loss function: This loss function helps in bringing the cross-correlation
matrix between the embeddings from the projection network closer to the identity
matrix.

2.2.2 Loss function:

The loss function used in pre-training calculates the cross-correlation matrix between the
embeddings from the network for each of the different distortions and tries to bring it closer
to the identity matrix. The loss function is given below (Eq. 3):

Lht=Z(1—cii)2+Az;c,~ﬁ 3)
i I j#i

In Eq. 3, A is a constant used to trade off the importance of the two loss terms. C is the
cross-correlation matrix, which will be the identity matrix in the ideal case. The cross-
correlation matrix between embeddings A and B, where b indexes samples and i,j indexes
the embeddings given by z is given by (Eq. 4):

Ci— Ly Z?ﬂf,j
! \/Zb(zﬁi)z\/Zb(Zgj)z
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3 Experiments

3.1 Dataset description

The data is recorded in pig form. In the testing station, the animals are grouped, with eleven
similar-sized animals in each pen, during the growth period from 30-120 kgs. Videos were
recorded 24/7 in top-down view by LOREX (4K Ultra HD IP NVR) and ELOTEC (4MP
Bullet, IP67) cameras with a resolution of 1920 x 1080 under different lighting conditions.
Some frames of these video sequences are extracted and manually annotated by the Darwin
V7 labs [1] and coco annotator [5]. These annotations contain bounding boxes, segmenta-
tion masks, and key points for each animal instance in the frame. The dataset used in this
work contains 1674 images as training data with their ground truths. The ground truths are
bounding boxes stored in JSON files created by manual animal boundary tracing by experts
using COCO API. The dataset was split into 1339 training data points and 335 testing data
points in an 80-20 split.

3.2 Evaluation metrics

The results are evaluated by calculating the Average Precision across various IoU thresh-
olds. The IoU threshold is a measure to determine the minimum required overlap between
predicted and ground truth bounding boxes for considering them as a true positive match.
The metric mAP (mean Average Precision) [13] is given in Eq. 5 and Eq. 6

1 N
AP=—Y AP 5
m. Ni:l i )
TP
AP= " ©6)
TP+ FP

The average detection precision is the number of true positives among the total positive
detections. A detection is considered True Positive if it has an IoU above a specified IoU
threshold (¢). The mAP is calculated across the IoU thresholds of ¢ =0.5,0.75,0.5 —0.95.

3.3 Implementation Details

We conducted all of our experiments using the open-source library Pytorch [11] and PyTorch
Lightning [9] on a machine with 16GB NVIDIA GeForce RTX 3080 Laptop GPU. As a pre-
processing step, all images of our respective datasets (training, testing and validation) are
resized to 512 x 512 and normalized to the [0, 1] range.

3.3.1 Pre-training:

For pre-training using Barlow Twins, we used the augmentations in BYOL [8]. Each image
needs to be augmented to produce two views consisting of random cropping, resizing, hori-
zontal flipping, colour jittering, grayscale, Gaussian blurring, and solarization. Cropping and
resizing are consistently applied, while the last five are applied randomly, with some proba-
bility. This probability is different for the two distorted views in the last two transformations
(blurring and solarization). The hyperparameters used in the pre-training stage are listed in
Table 1.
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Table 1: Implementation details of pre-training

Hyperparameter Value

A for Barlow twins loss | 5¢ —3
Embeddings size 4096
Batch size 16
Learning rate le—4
Epochs 50
Optimizer AdamW

3.3.2 Training:

We apply a horizontal flip with a probability of 0.5 for training using labelled data. The
backbone is initialized as a model pre-trained on ImageNet. The hyperparameters used for
the same are listed in Table 2.

Table 2: Implementation details of training

Hyperparameter | Value
Batch size 24
Learning rate 3e—3
Epochs 24
Optimizer AdamW

4 Results

The quantitative results are given in table 3. Our proposed model is compared with some
of the standard detection methods, and the evaluations are done on our unique dataset men-
tioned in section 3. Some of the qualitative results of the model can be seen in Fig. 2. The
quantitative results and the corresponding number of parameters and FLOPS are presented
in Table 3.In the table, "Proposed" refers to the application of our method. It is apparent
that the proposed method is able to push the accuracy of the model, especially in the higher
IOU thresholds, placing it on par with newer models such as YoloV4-Tiny [12] and a much
larger model like FasterRCNN [19] while being highly efficient at 5.8B FLOPS in the case
of EfficientDet-D1, proving that the efficiency of our model is superior, making it suitable
for applications such as tracking and behaviour analysis of animals.

Table 3: Quantitative evaluation of detection results: The proposed model (values noted
in bold) is evaluated by using mAP, which is calculated across the IoU thresholds of ¢ =
0.5,0.75,0.5—0.95.

Detector 05 Ol.l;?P 0.5: 0.96 Params FLOPS
EfficientDet DO 0.953 | 0.688 | 0.592 3.8M 2.4B
EfficientDet D1 0.957 | 0.796 | 0.662 6.6M 5.8B
FasterRCNN + ResNet50 FPN | 0.967 | 0.849 | 0.698 41.3M 13.3B
YoloV4 Tiny 0.962 | 0.794 | 0.664 6.06M 10.1B
Proposed EfficentDet-D0 0.952 | 0.707 | 0.599 3.8M 2.4B
Proposed EfficentDet-D1 0.956 | 0.817 | 0.665 6.6M 5.8B
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Figure 2: Reference images and their corresponding predicted bounding boxes.

4.1 Discussion

The potential reasons for the high accuracy and efficiency can be summarized in the follow-
ing:

» The object detector is able to learn the variance in the unlabelled data and the under-
lying visual features through self-learning.

* The detector is able to learn valuable representations from the labelled data.

* The high efficiency can be attributed to the detector having fewer parameters.

5 Conclusion

We propose a methodology for the self-supervised detection of animals in a constrained
environment. We pre-train base object detectors with modified Barlow Twins loss function
and use the unlabelled data for inference. A custom-built dataset is used to train and evaluate
the model. We achieved improvements in mAP in higher IoU ranges with the proposed
strategy. The resulting model is highly efficient in terms of FLOPS. In the future, we plan to
apply our method to improve the tracking of animals.
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