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Abstract
Object detection is commonly implemented on autonomous driving robot for avoid-

ing crashes. The purpose of this work enables robot to detect both volume-less object
(e.g. plastic bag, vomit) and object with volume (e.g. human, suitcase) in a large environ-
ment. Since avoiding costly annotation task, we apply anomaly detection. Conventional
works of anomaly detection sacrifice either memory size, storage size, or detection per-
formance. Hence, we propose anomaly detection on dynamic cluster selection, which
attempts better performance from the above three perspectives. Our proposition outper-
forms conventional works from F1 score and AUROC aspects, while keeping low storage
and low memory. That makes easier to implement on an embedded machine of a robot.

1 Introduction
Autonomous driving robots become more popular in warehouse, factory, and house. Most of
the robots have object detection for avoiding crashes. A typical sensor for object detection
is supersonic, infrared light, or LiDAR, which measures distance or shape. These sensors
can only detect objects with volume. Here, we aim to detect not only object with volume but
also volume-less object. An example of volume-less object is a plastic bag. A robot wheel
gets entangled when a robot moves on a plastic bag. Another example is vomit. A robot
makes virus spread if a robot accidentally moves on vomit. We use vision to detect both
volume-less object and object with volume, because a camera is commonly implemented on
an autonomous driving robot.

There are two approaches to detect an anomaly object by vision. The first approach is
supervised learning. Anomaly objects are trained on Transformer [7, 12] or Convolutional
Neural Network (CNN) [10, 17]. There are two obstacles to apply supervised learning on a
robot. It’s hard to collect a large amount of annotated images, though supervised learning
requires them at training. Additionally, supervised learning forces object definition that a
robot should avoid. A user may not imagine diverse categories of anomaly objects.

The second approach is anomaly detection [1, 6, 8, 14, 18, 21]. Distribution of normal
state is modeled at training. Anomaly objects are detected by deviation from normal state
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distribution. Anomaly detection does not require a large number of annotated images and
category definition of anomaly objects. These two conditions suit to implement on a robot.

However, conventional works of anomaly detection are not affordable in a large envi-
ronment because conventional works sacrifice either memory size, storage size, or detection
performance. Anomaly detection with moving camera [18, 21] requires a large storage size
for keeping either normal state models or images. One of the models or the images enables
anomaly detection only in a narrow space. Therefore, storage size becomes tremendous
when a robot covers entire area in a large environment. Though other works [1, 6, 8, 14] ef-
fectively compress features of normal states, evaluation of these works is limited under static
camera condition. We hypothesized that the performance may be degraded, when applying
these works under moving camera condition in a large environment. The reason why one
anomaly detection model may not fit all image features in a large environment.

Hence, we propose anomaly detection on Dynamic Cluster Selection (DCS), which at-
tempts better performance about memory size, storage size, and detection accuracy. A model
of each class predicts anomaly behavior in a local area. The local modeling encourages bet-
ter detection accuracy even if the above computational resources are limited. In addition,
for avoiding spatial fragmentation of classes, our clustering deals with both image feature
difference and spatial correlation. That invokes auxiliary effect to suppress frequent model
changes while moving.

To summarize, our contribution is below.

• Anomaly detection for robot: We propose anomaly detection, which is affordable to
implement on a robot. Classwise local modeling achieves higher F1 score and AU-
ROC, while keeping low memory size.

• Clustering that cares both feature difference and spatial correlation: Our clustering
finds scene changes under spatial restriction. It enables spatially local modeling, which
suppresses frequent model changes while a robot is moving.

• Evaluation in a large environment : Evaluation is held on RISEdb [15], which is one
of the large environment datasets.

2 Related Work
Most of the robots commonly implement object detection for avoiding crashes. Mainly, there
are two object detection approaches. The first approach uses point cloud. VoxelNet [22]
detects objects by shape feature extracted in each voxel. PointPillar [11] projects point cloud
to image plane. Objects are detected from a projected image by CNN. Other works are shown
in [9], comprehensively. Point cloud object detection can detect only object with volume.
Here, we aim to detect also a volume-less object (e.g. plastic bag and vomit).

The second approach uses vision. CNN [10, 17] has been known as a typical backbone
architecture. Multiple convolutional layers compress image feature for arbitrary tasks. Vi-
sual transformer [7, 12] is another backbone. Transformer trains multi-layered exploitation
mechanism of key, value, and query. We avoid to retrain these backbones because it takes
much cost to collect annotated data. Furthermore, definitions of anomaly objects are occa-
sionally hard under practical situation.

Anomaly detection is another way to detect both object with volume and volume-less ob-
ject by vision. Anomaly state is detected by deviation from normal state model. GANomaly [1]
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Figure 1: The pipeline of our robot anomaly detection with the dynamic clustering scheme.
(bottom) During the inference, we select a model from the cluster based on the frame index.
In this example, the detected anomaly is highlighted by the red circles.

generates normal state model by generative adversarial network. PaDiM [6] uses normal
distribution to model embedding vectors on normal state. Each embedding vector is gener-
ated by concatenating multiple outputs of front layers. CFLOW-AD [8] applies normaliz-
ing flow, which is trained by supervised learning to estimate distribution of normal states.
PatchCore [14] uses embedding vector as well as PaDiM [6]. Instead of normal distribu-
tion modeling in PaDiM [6], PatchCore [14] uses K-Nearest Neighbor (KNN) and memory
bank. Anomaly state is detected by the minimum distance from embedding vectors in mem-
ory bank. Though these works [1, 6, 8, 14] effectively compress features of normal states,
evaluation of these works is limited under static camera condition.

Some works describe anomaly detection under moving camera condition. However, stor-
age size is bottleneck to apply these works in a large environment. One of the works uses
principal component analysis [18]. Firstly, the method aligns an inferring frame to a database
frame by viewpoint transformation. Anomaly state is detected by discrepancy from principal
eigen vectors on normal state. The method allows only subtle viewpoint difference, because
viewpoint transformation is processed on local image features commonly extracted from an
inferring frame and a database frame. Anomaly detection system [21] stores images and
their viewpoints on a database. Siamese network detects an anomaly object by comparing
stored images and an inferring image. Siamese network is not ideal from computational
aspect due to processing multiple stored images in a certain area. Computational cost is
mitigated, when stored images are turned into embedding vectors previously. However, the
approach with Siamese Network remains excessive computational load. All stored embed-
ding vectors are processed for comparing an inferring image. As the summary of the two
works [18, 21], both works require a large memory and a large storage for keeping images
or vectors, because either an image or a vector enables anomaly detection only in a narrow
space.
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(a) (b)
Figure 2: Conceptual effort of our image feature spatial clustering (IFSC). Combination of
gray boxes and black lines describes a floor map. Red, green, orange boxes mean conceptual
clustering result.: (a) fragmentation occurs spatially, if clustering deals with frames indepen-
dently; (b) spatial fragmentation is suppressed by IFSC due to spatial restriction.

3 Robot Anomaly Detection

Our work is inspired by the anomaly detection system, which utilizes robots to navigate the
environment [21]. We focus on embedding vector modeling to realize anomaly detection
with low memory and low storage. PaDiM [6] can reduce memory and storage by fitting em-
bedding vectors on normal state to normal distribution. PatchCore [14] reduces the number
of embedding vectors by core-set sampling. Only important embedding vectors are stored for
inference. We hypothesized that PaDiM and PatchCore make efforts under moving camera
condition.

In addition to embedding vector modeling, we tailor clustering. We hypothesize that one
anomaly detection model may not fit an entire area in a large environment (e.g. a building
or shopping mall). Therefore, we divide a large dataset into several local datasets, which
follows Dynamic Cluster Selection (DCS) [5, 19]. DCS separates entire feature space to
multiple subspaces by a machine learning(e.g. support vector machine). Subsequently, a
model is trained in each subspace.

Our anomaly detection model {θi|i= 1...N} is trained on each local dataset. The pipeline
is shown in Figure1. N represents the total number of classes separated by Image Feature
Spatial Clustering (IFSC). θi refers to parameters of each model, and the contents in θi
depend on a selected anomaly detection algorithm. For example, in the case of PatchCore, θi
includes embedding vectors in a memory bank and a pair of an image threshold and a pixel
threshold.
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3.1 Optimal Anomaly Detection
For clarifying optimal anomaly detection under moving camera condition, we evaluate PaDiM [6]
and PatchCore [14]. There are two reasons to choose the two algorithms. Firstly, PaDiM and
PatchCore achieved the state of the art on MVTec dataset [3]. Secondly, network retrain-
ing is not required. Storage size increases linearly by the number of local models as shown
in Figure1. We would suppress size of each model by avoiding to restore parameters of a
network.

Evaluation detail is shown in Section4.3. Consequently, PatchCore outperforms PaDiM
under moving camera condition.

3.2 Image Feature Spatial Clustering
We describe a clustering under DCS framework. Our subspace clustering is processed by
image features extracted from respective frames. If subspace clustering deals with image
features independently without any restrictions, subspaces are fragmented spatially. Then, a
local model should often be changed while a robot moves in a large environment. That makes
model management difficult. Hence, our subspace clustering employs spatial restriction. We
implement spatial restriction in dendrogram, which repeats to merge two clusters i and j. We
call the clustering as Image Feature Spatial Clustering(IFSC).

When dendrogram addresses image features independently, distances among all the fea-
tures are calculated. Mathematically, feature i and j are merged by Eq. (1).

arg min
i, j∈G,i̸= j

di, j (1)

G is a group, which contains features. Initially, G is consisted of features extracted from all
respective frames. An initial feature in G is created by concatenating embedding vectors on
some patches. Here, five patches are concatenated, as shown in Figure3. Initial features in
G are merged by repetitive dendrogram process. di, j is distance between features in cluster i
and j.

Instead of Eq. (1), IFSC applies Eq. (2) for implementing spatial restriction. Eq. (2)
restricts distance calculation only with spatial neighbors.

arg min
i∈G, j∈η(i)

di, j (2)

η(i) is neighbors of cluster i. Here, neighbors are limited to the next and the previous clusters
spatially. Computational cost in Eq. (2) is O(N) reduced from O(N2) in Eq. (1).

Conceptual effort of IFSC is shown in Figure2. Classes are fragmented spatially if image
features are addressed independently. IFSC avoids the fragmentation by spatial restriction.

4 Evaluation

4.1 Dataset Generation
Since there is no publicly available dataset that evaluates anomaly detection under moving
camera condition, to our knowledge, we synthesized a dataset by combining two public
datasets. One is RISEdb [15], which is one of the large environment datasets. Frames in
RISEdb are video sequences taken from various viewpoints. We use the original RISEdb
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Figure 3: Five patches to create an image feature for clustering. Embedding vectors on five
red patches are concatenated.

frames as the normal ones, and synthesized objects to their frames as abnormal ones. The
synthesized objects were from the other dataset Pix3D [16], which includes diverse furniture
images.

The detail synthesis procedure is described as follows. First, since the images of RISEdb [15]
are captured by fisheye cameras, as shown in Figure 3, we first crop 50% of the frames hor-
izontally to form squared patches. Then we sample 20% frames of RISEdb, as the frames
are from video sequences and the adjacent ones could be redundant. Among the sampled
frames, two of the third were used for training and the other for testing. To generate abnor-
mal frames, we randomly selected objects from Pix3D [16], and scaled the patches of the
sampled objects to be around 7 - 21% of the entire images.

4.2 Implementation

We implement our algorithm based on anomalib [2], and we use the pretrained Wide Resid-
ual Network [20] to extract the feature vectors. Frames were resized to 224× 224 before
forwarding through the neural networks.

We evaluate PaDiM [6] and PatchCore [14] under moving camera condition. When
testing with PatchCore, we sample 0.2 of the feature vectors to form the core-set, and use
the feature of the second and the third layers to form the embedding vector. We use the
deviation from 9 the neighbors to detect anomaly objects. When testing with PaDiM, we
concatenate the features of the first three layers. For IFSC, we set 600 as clustering threshold
of dendrogram. The threshold was empirically specified to form 6 classes.

4.3 Optimal Anomaly Detection

Table 1 shows our result with PatchCore and PaDiM. It can be seen that PatchCore outper-
forms PaDiM with moving cameras. The difference could come from two reasons. First,
PaDiM models the distribution of features per patches as a multivariate normal distribution,
which could be insufficient to model the embedding vectors of frames captured by different
viewpoints. In constrast, as PatchCore is based on the k-nearest-neighbors of the sampled
embedding vectors, which is therefore more suitable on moving cameras. Second, PaDiM
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Datasets
(Classes)

Training
Frames

Test
Frames Models

AUROC
(image)

F1 Score
(image)

AUROC
(pixel)

F1 Score
(pixel)

(0) 261 180 PaDiM 0.824 0.730 0.991 0.369
PatchCore 0.879 0.778 0.993 0.489

(1) 141 90 PaDiM 0.819 0.667 0.985 0.362
PatchCore 0.864 0.682 0.988 0.398

(2) 1102 758 PaDiM 0.791 0.667 0.983 0.283
PatchCore 0.791 0.691 0.983 0.309

(3) 48 22 PaDiM 0.905 0.800 0.998 0.655
PatchCore 0.818 0.645 0.997 0.573

(4) 279 188 PaDiM 0.851 0.667 0.992 0.433
PatchCore 0.864 0.674 0.991 0.437

(5) 107 78 PaDiM 0.807 0.696 0.993 0.469
PatchCore 0.881 0.825 0.994 0.500

Total 496 1316 PaDiM 0.809 0.680 0.986 0.339
PatchCore 0.859 0.739 0.992 0.462

Table 1: Comparison between PaDiM and PatchCore on sequence1 in RISEdb. "Total"
describes weighted average of metrics. Test frames are used as the weight. Datasets(Classes)
are created by IFSC shown in Section 3.2

.

Datasets
(Classes) Models

AUROC
(image)

F1 Score
(image)

AUROC
(pixel)

F1 Score
(pixel)

(0)
PatchCore-S 0.756 0.667 0.979 0.425
PatchCore-L 0.873 0.667 0.993 0.462
IFSC+PatchCore-S 0.875 0.772 0.992 0.494

(1)
PatchCore-S 0.719 0.667 0.971 0.285
PatchCore-L 0.833 0.667 0.987 0.326
IFSC+PatchCore-S 0.875 0.667 0.987 0.400

(2)
PatchCore-S 0.701 0.665 0.981 0.283
PatchCore-L 0.739 0.665 0.986 0.359
IFSC+PatchCore-S 0.806 0.745 0.986 0.366

(3)
PatchCore-S 0.864 0.667 0.994 0.383
PatchCore-L 0.856 0.667 0.997 0.379
IFSC+PatchCore-S 0.860 0.667 0.997 0.553

(4)
PatchCore-S 0.658 0.667 0.981 0.378
PatchCore-L 0.849 0.667 0.991 0.424
IFSC+PatchCore-S 0.855 0.657 0.991 0.434

(5)
PatchCore-S 0.648 0.667 0.988 0.414
PatchCore-L 0.803 0.667 0.994 0.499
IFSC+PatchCore-S 0.882 0.805 0.994 0.501

Total
PatchCore-S 0.703 0.667 0.981 0.326
PatchCore-L 0.785 0.667 0.988 0.389
IFSC+PatchCore-S 0.850 0.721 0.990 0.438

Table 2: Comparison between conventional anomaly detection by global modeling
(i.e. PatchCore-S, PatchCore-L) and local modeling with DCS (i.e. IFSC+PatchCore-S).
PatchCore-S limits embedding vectors in memory bank under 31360. PatchCore-L stores
111641 embedding vectors in memory bank. IFSC+PatchCore-L creates local models under
DCS framework. A memory bank and thresholds are modeled locally. Embedding vectors
in each memory bank are limited under 31360. These algorithms are evaluated on generated
dataset, which combines RISEdb and Pix3D.
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models the distribution in the level of patches, which make it less ideal when the normal
patterns are moving. In the latest section, we describe our algorithm with PatchCore.

4.4 Local Modeling by Image Feature Spatial Clustering

We compared three settings. One is PatchCore-S, which trains frames in the entire area of
a large environment. The embedding vectors in the memory bank were limited to 31360.
A pair of an image threshold and a pixel threshold are applied to entire area (i.e. all test
frames). The second one is PatchCore-L, which includes all embedding vectors extracted
by IFSC+PatchCore-S. For our synthesized dataset, IFSC+PatchCore-S generates 111641
embedding vectors. The last one is IFSC+PatchCore-S where each local model can have at
most 31360 embedding vectors in its own memory bank and have its own image-wise and
pixel-wise thresholds to detect the anomaly, trained by its own data.

Table 2 shows the quantitative result. It clarifies that the local modeling (i.e. both a
local memory bank and local thresholds) encourages higher F1 score and AUROC from
comparison between PatchCore-L and IFSC+PatchCore-S. Memory bank of PatchCore-L
includes all embedding vectors in all memory banks of IFSC+PatchCore-S. However, F1-
score and AUROC of IFSC+PatchCore-S are higher than PatchCore-L. It means that local
image and pixel thresholds are meaningful to divide normal and anomaly states in a local
area.

Figure 4 shows the qualitative results. Among these results, IFSC+PathCore-S can detect
anomaly that cannot be detected by PatchCore-S and PathCore-L, such as scene 1, 3, and 4.
It should be noted that the anomaly maps of all methods are similar, although the detection
results are different. Because of this observation, we suppose that the higher accuracacy of
IFSC+PathCore-S is due to the local-model-wise thresholds.

5 Conclusion

For enabling a robot to detect both object with volume and volume-less object in a large
environment, we propose robot anomaly detection, which is a combination of anomaly de-
tection and dynamic cluster selection. Our evaluation proves that robot anomaly detection
achieves higher F1 score and AUROC, while keeping low memory size and low storage size.
Furthermore, our clustering of dynamic cluster selection avoids spatial class fragmentation.
The effort makes model management easier while a robot moves. There is no public dataset
for evaluating anomaly detection in a large environment. Hence, we create a dataset by
combining two public datasets.
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Figure 4: Qualitative comparison between PatchCore-S, PatchCore-L, and IFSC+PatchCore-
S. In anomaly map, yellow color means high anomaly level. Conversely, blue is low. In
detection result, red convex depicts a found anomaly object.
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