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Abstract

Animating virtual characters in VR applications is crucial for creating immersive
experiences in various use cases and particularly in video games industry. This paper
addresses the challenge of accurately animating a virtual avatar’s full-body motion using
sparse inputs from head-mounted displays (HMDs) and handheld controllers. However,
the sparse nature of the input data leads to pose ambiguity issue which can affect the real-
ism of the animation. The paper investigates the impact of extending these sparse motion
features with Cartesian coordinates that can be estimated from RGB-D cameras setup,
hence without relying on additional tracking devices on the user’s body. Experiments
are conducted employing AvatarPoser [9], a state-of-the-art Transformer-based model in
the full-body avatar’s animation. The results indicate that augmenting the sparse input,
even with a single-view 2D pose, enhances the accuracy of the avatar’s full-body mo-
tion reconstruction, especially in lower-body tracking. More importantly, our analysis
reveals that, when combined with sparse motion signals, 2D Cartesian coordinates from
two different perspectives are sufficient to reconstruct the motion at least as accurately as
3D positional data. We believe that this paper impacts positively the development of VR
applications since the user experience overall quality is enhanced by the improvement of
the self-avatar’s motion reconstruction.

1 Introduction
Animating virtual characters is a crucial task in a broad range of industrial applications,
especially in video games. Various deep learning-based methods have been proposed to
synthesize diverse and human-like motion samples [24, 43, 44]. In the Virtual Reality (VR)
paradigm, a key component in the design of immersive spaces is the animation of the self-
avatar i.e., the virtual representation of the user’s body designed to mirror its movements and
actions. It helps the users to feel more connected to the virtual space and can enhance the
overall sense of immersion and realism in VR experiences. In this context, the subject wears
a head-mounted displays (HMD) and handheld controllers whose position and orientation
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of are computed by integrated tracking sensors. Since a VR commercial system usually
provides only these 3 devices, the lack of available information makes the self-avatar’s full-
body animation challenging. Indeed, it is necessary to estimate lower-body information from
the hands and head motion features and this can lead to a pose ambiguity issue since many
poses can be estimated from the sparse motion signals.

On the one hand, some works estimate the full-body motion features given this set of
sparse inputs [6, 9]. These algorithms animate the lower body without any tracked infor-
mation from this subset. The main advantage of these methods is that no external tracking
device is involved, making it suitable for their implementation in a consumer-grade level.

On the other, to resolve the pose ambiguity, additional information can be used to extend
the sparse sensors data, such as external Inertial Measurement Unit (IMU) sensors [8, 14],
depth cameras [34] or RGB videos [41]. These methods aim to extract motion features from
body limbs that are not tracked by HMDs and controllers. However, such methods come with
several drawbacks such as the presence of external devices which can impede the widespread
adoption of these technologies. Moreover, equipping the users with such sensor might have
an impact on its comfort and affect negatively the overall experience. Then, the process of
merging motion capture data from various sources, each with its own unique framerate, can
potentially lead to an increase in inference delay. This, in turn, might have consequences for
the real-time responsiveness of the animation system, which is an essential feature in this
context.

The objective of this research is to analyze the influence of supplementary motion cues on
mitigating pose ambiguity challenges in the estimation of complete-body articulated avatar
movements. This investigation is conducted employing AvatarPoser [9] 1, a state-of-the-art
Transformer-based animation model. More precisely, we extend the sparse information from
HMD and handheld controllers by Cartesian positions that can be estimated from a setup of
RGB(-D) cameras such as 3D [26, 31] or 2D coordinates [4, 5].

2 Related Work

2.1 Articulated Avatar Animation from Sparse Sensors in VR
The virtual character’s full-body pose estimation from sparse sensors is a task widely studied
in the literature in various configurations [10, 28, 36, 39, 40]. Typically, the user’s body is
equipped with several IMU sensors that are used to accurately retrieve its pose. In VR
scenarios, the typical approach involves three tracking sensors with 6 degrees of freedom
(DoF) to estimate the avatar’s pose.

Machine Learning approaches have been proposed to estimate the pose of a virtual avatar
using only the sparse sensors signals [1, 25]. These methods employ respectively k-NN and
motion matching [3] to fetch the appropriate pose from a motion database that closely aligns
with the user’s input-defined pose. However, the performance of such algorithms relies
importantly on the motion database from which motion samples are selected. This dataset
should gather high-quality motion samples that encompass smooth transitions and blending
between different motions as well as the wide range of desired actions. Moreover, in VR
animation, Ponton et al. point out [25] the difficulty of animating upper body gestures with
motion matching since the motion of the user’s arms are not constrained. This leads to a
unmanageable large-scale motion database in order to cover the variety of plausible poses.

1https://github.com/eth-siplab/AvatarPoser
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Sequential models based on Deep Neural Networks have been utilized to animate the
avatar’s full-body. LoBSTr [37] employs Gated Recurrent Units and an Inverse Kinematics
solver to animate respectively the lower- and upper-body pose. Inspired by the popularity of
Transformers [32], AvatarPoser [9] make use of that family of neural network to predict the
local orientations of each joint in the avatar’s kinematic tree based on the positions, orien-
tations, linear and angular velocities of the 3 tracking sensors. DualPoser [45], built upon
AvatarPoser, proposes two Transformer-based encoders to handle global and local informa-
tion and further fuse the processed data. This method improves the accuracy of the pose
reconstruction in comparison to AvatarPoser.

A last set of solution leverages this problem in kinetic i.e., involving physical simulation
of the virtual character. QuestSim [33] and QuestEnvSim [16] use Reinforcement Learning
techniques to estimate the pose from sparse tracking sensors of a physical avatar and make
it adaptive to its virtual environment.

2.2 Articulated Avatar Animation from Multimodal Data

Due to the difficulty to animate a virtual character’s full-body from sparse sensors, often
leading to pose ambiguity, some approaches have been proposed to combine these signals
with motion features from other sources. Since RGB videos have been successfully exploited
to tackle the problematic of real-time human pose reconstruction [12, 13, 21, 22, 42], videos
of the scene have been used to extend IMU sensors information, even with a single point of
view. This procedure has shown encouraging results in accurate motion tracking [11, 17, 20,
29]. More recently, EgoLocate [41] fuses the data from the egocentric view captured by a
monocular camera and the signals from the IMU tracking devices to precisely animate and
localize the virtual character in the environment.

Additional external sources such as LiDAR [27] or optical markers placed on strategic
positions on the subject’s body [2] are also employed in this context. The 3D points clouds
data from the LiDAR is fused with IMU sensors to achieve a robust and accurate motion
tracker for collecting motion data in large-scale scenarios.

VR applications also benefit from such data fusion. Wu et al. set up, additionally to
the HMD and the handheld controllers, 4 RGB-D cameras (Kinect) and a LeapMotion for
full body and hands tracking [35]. However, this setup can be cumbersome regarding the
use case and a calibration process for each Kinect, which hinders a large-scale deployment
of this method. To leverage this issue, a single external of-the-shelf RGB web camera has
been integrated in the animation external setup [38]. This application employs a 2D pose
estimator to reconstructs the human full-body positions from the RGB videos and extend the
data from the VR trackers to estimate the virtual avatar’s full pose.

3 Analysis

3.1 Dataset

Similarly to [9], we conduct our experiments on 3 subsets of the large-scale motion capture
AMASS Dataset [19]: BMLrub [30], CMU [15] and HDM05 [23]. AMASS Dataset unifies
optical-based motion capture datasets into a standard kinematic tree and use SMPL approach
[18] to provide realistic 3D human meshes represented by a rigged body model. These
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subsets gather around 5200 motion samples for a duration of more than 20 hours. The
standardized kinematic tree is structured into 22 joints.

3.2 Approach
The proposed method aims to study the effect of additional motion features on the full-body
self-avatar’s pose estimation and is described in Figure 1. We employ AvatarPoser [9], a
Transformer-based architecture that encodes the sparse motion signals tracked by the VR
devices. Then, the local orientations and the global motion navigation are learnt form the
encoded motion representation. We refer the sparse motion signals as X0,...,T−1 gathering the
3D Cartesian positions p = {pHead , pLe f tHand , pRightHand}, the orientation r, the linear and
angular velocity respectively denoted as vp and vr, of the head and handheld controllers. The
motion samples are considered in a temporal window of T frames. In our experiments, we
set T = 40 frames.

X0,...,T−1 =


p0 r0 vp

0 vr
0

p1 r1 vp
1 vr

1
... ... ... ...

pT−2 rT−2 vp
T−2 vr

T−2
pT−1 rT−1 vp

T−1 vr
T−1

 (1)

Our method proposes to concatenate the sparse motion signals from the VR tracking de-
vices by XF

0,...,T−1. Hence, since X0,...,T−1 ∈RT×54 in AvatarPoser [9], X0,...,T−1⊕XF
0,...,T−1 ∈

respectively RT×120 and RT×98 if XF
0,...,T−1 represents 3D or single-view 2D features.

XF
0,...,T−1 =


f0
f1
...

fT−2
fT−1

 (2)

Here, f plays the role of (a) the full-body avatar’s 3D global Cartesian positions, then
(b) the 2D local projection of these positions using calibrated RGB cameras parameters.
These feature sets can be estimated from a setup of one or multiple cameras [7]. Therefore,
no additional cumbersome and costly trackers that hamper the user experience are required.
Concerning the 2D positions, we built a set up of 4 virtual calibrated cameras for the multi-
view projection of the 3D Cartesian coordinates. This set up is shown in Figure 2. Our
projection takes into account the extrinsic and intrinsic camera parameters, but we ignore the
radial and tangential distortion induced by the cameras.

Our approach feeds X0,...,T−1⊕XF
0,...,T−1 to AvatarPoser as proposed in [9] to generate the

virtual character’s full-body pose i.e., the local orientations and the global root displacement.
Then, the reconstruction error is measured between the ground truth and the predicted pose
to study the impact of XF

0,...,T−1 in the full-body pose estimation.

3.3 Experiments
The experiments are split into 3 cases: XF

0,...,T−1 contains (1) the ground truth 3D Cartesian
positions, then (2) a single-view 2D projection of these coordinates in each camera defined
in the proposed setup and (3) the 2D projection from two distinct cameras to investigate

Citation
Citation
{Jiang, Streli, Qiu, Fender, Laich, Snape, and Holz} 2022{}

Citation
Citation
{Jiang, Streli, Qiu, Fender, Laich, Snape, and Holz} 2022{}

Citation
Citation
{Hartley and Zisserman} 2003

Citation
Citation
{Jiang, Streli, Qiu, Fender, Laich, Snape, and Holz} 2022{}



MAIORCA ET AL.: SELF-AVATAR’S ANIMATION WITH CARTESIAN COORDINATES 5

AvatarPoser

Figure 1: Overview of the proposed analyzes. The experiments aim to measure the im-
pact of extending HMD and controllers sparse signals on the self-avatar’s full-body motion
reconstruction error in Transformer-based model. These analyzes employ AvatarPoser [9]
architecture to estimate the local rotations and global displacement from the input motion
features. In our experiments, XF

0,...,T−1 is either the 3D ground truth Cartesian positions or
their 2D projection in a camera space.

X-axis

321012345Y-axis

3 2 1 0 1 2 3 4 5

Z-axis

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

cam1 cam2cam3
cam4

X-axis
Y-axis
Z-axis

Figure 2: Virtual cameras set up. The 3D Cartesian positions are projected into each camera
space and provide a set of multi-view 2D poses. The coordinate system in each camera space
is represented in red (X-axis), green (Y-axis) and blue (Z-axis).

the influence of dual projection viewpoints. In each configuration, we train AvatarPoser [9]
10.000 epochs with a batch size of 256 on a Nvidia RTX3090 GPU. Then, the mean error of
position, rotation and velocity between the model output and the ground truth are computed
for each scenraio. This analysis is divided into the upper and lower body segments, aiming
to accentuate potential dissimilarities in behavior between these two regions.
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4 Results
To evaluate each configuration, we report the mean per joint positional (MPJPE), rotational
(MPJRE) and velocity (MPJVE) error computed between the ground truth and the predicted
motion for upper and lower body. Table 1 shows the results of the motion reconstruction in
each tested configuration. The 3 inputs row refers to the original experiments proposed in
[9].

First of all, in every tested configuration, the Cartesian positions improve the full-body
motion estimation: the reconstruction error is decreased for upper- and lower-body subsets.
Considering the 3D Cartesian positions, the MPJPE and MPJVE metrics are not relevant.
Indeed, although providing ground truth 3D Cartesian positions helps to accurately estimate
the local rotations of the articulated avatar, the positions estimated by the model should not
be used to animate the avatar since the ground truth positional information is available.

Then, our observation reveals that supplementing the inputs from the HMD and handheld
controllers with 2D projected positions from two distinct perspectives yields reconstruction
errors that are either comparable to or inferior than those attained by the model utilizing 3D
Cartesian positions. This means that, estimating the full-body motion with AvatarPoser [9],
it appears not necessary to make a 3D reconstruction of the 2D poses estimated on the RGB
cameras if two different points of view are provided as additional information.

We also observe that providing even one single view of the 2D full-body positions, in
addition to the sparse HMD and controllers inputs, guides efficiently the avatar’s motion
estimation. More importantly, the precision of the motion reconstruction is barely affected
by the camera point of view. The largest error difference regarding each metric between
the single camera configurations is (0.04cm, 0.13°,0.34cm/s) and (0.1cm,0.04°,1.04cm/s)
for respectively upper- and lower-body motion. Indeed, the motion dataset gathers a large
diversity of global motion direction. This ensures that variations in camera angles have
minimal influence on the precision of the motion reconstruction process, as soon as the 2D
projection in the camera space, regardless its position and orientation in world space, is used
as training data.

Finally, the positional features impact more importantly the reconstruction of the lower-
body motion compared to the upper-body motion. We believe that this effect comes from
the fact that the lower-body information is not tracked using sparse sensors highlighting the
pose ambiguity issue. Hence, providing lower-body information helps to resolve this pose
ambiguity and efficiently guides the full-body poses estimation.

Examples of estimated pose samples can be found in Figure 3. The positional errors
are highlighted on the SMPL model. We observe that, using only the sparse inputs, the
positional errors are mainly located in the avatar’s legs and feet due to the lack of tracking
sensors in lower-body region. Augmenting the sparse information with the 3D or projected
2D Cartesian coordinates of the avatar’s joints decreases the reconstruction error, especially
in that region of the body. Figure 3 shows that this improvement is more significant providing
3D Cartesian positions than the 2D coordinates in a single viewpoint.

5 Discussion and Perspectives
The experiments described in Section 3 aims to study the behavior of a Transformer-based
model that estimate the self-avatar’s full poses regarding the motion features provided by the
tracking solution. We consider that solution based on RGB-D cameras for the user to avoid

Citation
Citation
{Jiang, Streli, Qiu, Fender, Laich, Snape, and Holz} 2022{}

Citation
Citation
{Jiang, Streli, Qiu, Fender, Laich, Snape, and Holz} 2022{}



MAIORCA ET AL.: SELF-AVATAR’S ANIMATION WITH CARTESIAN COORDINATES 7

MPJPE up [cm] MPJRE up [°] MPJVE up [cm/s]
3 inputs 1.65 5.64 12.86

3 inputs + 3D positions - 2.52 -
3 inputs + 2D (cam 1) 0.86 2.8 7.66
3 inputs + 2D (cam 2) 0.89 2.93 8.00
3 inputs + 2D (cam 3) 0.86 2.82 7.73
3 inputs + 2D (cam 4) 0.9 2.90 7.92

3 inputs + 2D (cam 1 + 4) 0.72 2.52 6.78
3 inputs + 2D (cam 2 + 4) 0.73 2.55 6.81
3 inputs + 2D (cam 3 + 4) 0.72 2.49 6.71

MPJPE low [cm] MPJRE low [°] MPJVE low [cm/s]
3 inputs 6.79 6.4 44.35

3 inputs + 3D positions - 2.02 -
3 inputs + 2D (cam 1) 1.81 2.36 16.17
3 inputs + 2D (cam 2) 1.88 2.38 16.66
3 inputs + 2D (cam 3) 1.8 2.34 16.04
3 inputs + 2D (cam 4) 1.9 2.34 17.08

3 inputs + 2D (cam 1 + 4) 1.46 1.92 13.37
3 inputs + 2D (cam 2 + 4) 1.47 1.9 13.4
3 inputs + 2D (cam 3 + 4) 1.42 1.89 13.22

Table 1: Reconstruction error in each tested configuration. The Transformer-based animation
model performance is positively impacted by the additional motion features, especially in the
lower-body reconstruction.

wearing any tracking devices or sensors other than the HMD and the handheld controllers.
The additional motion features are available in the dataset used for our experiments. Since
the motion datasets have been recorded by optical systems, the 3D Cartesian positions are
tracked with a high fidelity. However, estimating 3D Cartesian positions from one or mul-
tiple RGB-D cameras suffers from a lower precision and major artifacts such as occlusions.
Further experiments should study the impact of these artifacts on the full poses estimation
for a more realistic context.

Moreover, the estimation of such information might suffer from a computation time that
is critical in the design of real-time applications. Although AvatarPoser [9] exhibits interest-
ing real-time performance in the avatar’s full poses estimation from sparse inputs, extending
this method with 2D or 3D pose estimation from RGB videos might induce a larger delay
and make the proposed framework irrelevant for real-time animation. Moreover, the data
acquisition from different sources might be performed at different framerate, inducing a syn-
chronization issue for the articulated avatar’s motion estimation. These parameters should
also be studied in future works.

Although we focus our work on single avatar full-body pose estimation, we believe that
multi-avatar animation from sparse inputs can also be augmented with full-body Cartesian
positions. However, within this scenario, implementing a subject identification algorithm
would be advantageous for the animation framework. This algorithm would facilitate the
assignment of joints to specific subjects.
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Figure 3: Examples of poses from (left to right): sparse 3 inputs, 3 inputs + 2D Cartesian
positions projected on camera 4, 3 inputs + 3D Cartesian position and ground truth motion.
Extending the sparse motion signals by the Cartesian position from an external source of
motion capture improves the full-body motion reconstruction, especially in the reconstruc-
tion of the lower-body parts.

6 Conclusion
This work investigates the impact on extending orientations and positions of the headset
and handheld controllers in the articulated self-avatar’s full-body motion estimation. More
precisely, we provide the 3D ground truth Cartesian positions as well as the 2D projection of
these positions in the camera space. These features can be estimated from RGB-D cameras,
which is suitable in the VR animation context, since we avoid to equipped users with external
tracker devices which might hinder the user experience quality. We observe that these two
set of additional features significantly improve the precision of the motion reconstruction,
especially for the lower body. While this study presents promising outcomes within the
realm of VR animation, we believe that future explorations focusing on potential motion
artifacts inherent to pose estimation from RGB videos algorithms or delay between sources
of motion could provide valuable insights in this domain.
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