
IOANNOU AND MADDOCK: NST FOR COMPUTER GAMES 1

Neural Style Transfer for Computer Games
Eleftherios Ioannou
eioannou1@sheffield.ac.uk

Steve Maddock
s.maddock@sheffield.ac.uk

Department of Computer Science
University of Sheffield
Sheffield, UK

Abstract
Neural Style Transfer (NST) research has been applied to images, videos, 3D meshes

and radiance fields, but its application to 3D computer games remains relatively unex-
plored. Whilst image and video NST systems can be used as a post-processing effect
for a computer game, this results in undesired artefacts and diminished post-processing
effects. Here, we present an approach for injecting depth-aware NST as part of the 3D
rendering pipeline. Qualitative and quantitative experiments are used to validate our in-
game stylisation framework. We demonstrate temporally consistent results of artistically
stylised game scenes, outperforming state-of-the-art image and video NST methods.

1 Introduction
Neural Style Transfer (NST) refers to the process of changing the appearance of an input
image based on a reference style image, whilst preserving the input image’s underlying con-
tent. For example, a photograph of a landscape can be made to take on the style of a Van
Gogh painting. More recently, NST has been extended to work for three-dimensional data,
such as 3D meshes, point clouds, and radiance fields. Given the inherently creative and artis-
tic nature of NST, another domain where its application holds immense potential is within
the realm of 3D computer games. By integrating style transfer techniques into computer
games, developers could dynamically alter the visual aesthetics of a game in real-time, and
players could be given the ability to choose from an array of artistic styles, influencing the
appearance of the game’s world and characters according to their preferences.

However, there is limited work applying NST to 3D computer games. Whilst NST ap-
proaches have not been specifically tailored for 3D computer games, image and video NST
methods can be applied at the end of the 3D computer graphics pipeline, as a post-processing
effect [52]. This essentially treats the data as a sequence of images. Here, temporal consis-
tency across consecutive frames is the prominent challenge. Some video NST approaches
utilise optical flow information and introduce a temporal consistency loss to achieve tempo-
ral stability [4, 9, 10, 14, 42], whilst other approaches rely on improving the stability of the
transferred content and style features [6, 28, 31]. Nevertheless, employing such models at
the post-process stage of the 3D computer graphics pipeline, results in undesired flickering
effects and inconsistent stylisations.

Previous work has demonstrated that the utilisation of G-buffer data can lead to improved
quality of generated stylised game scenes [34, 40]. Our work takes advantage of the interme-
diate data that is generated by a 3D computer graphics rendering pipeline, and proposes an

© 2023. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Technologies} 2023{}

Citation
Citation
{Chen and Schmidt} 2016

Citation
Citation
{Gao, Gu, Zhang, and Yu} 2018

Citation
Citation
{Gao, Li, Yin, and Yang} 2020

Citation
Citation
{Huang, Wang, Luo, Ma, Jiang, Zhu, Li, and Liu} 2017

Citation
Citation
{Ruder, Dosovitskiy, and Brox} 2017

Citation
Citation
{Deng, Tang, Dong, Huang, Ma, and Xu} 2021

Citation
Citation
{Liu, Lin, He, Li, Wang, Li, Sun, Li, and Ding} 2021{}

Citation
Citation
{Lu and Wang} 2022

Citation
Citation
{Mittermueller, Ye, and Hlavacs} 2022

Citation
Citation
{Richter, AlHaija, and Koltun} 2022



2 IOANNOU AND MADDOCK: NST FOR COMPUTER GAMES

approach for integrating an NST model at an earlier stage of the rendering process (Figure 1),
resulting in improved, more stable artistic stylisations of game worlds. Our method retrieves
data from the camera colour buffer, generates consistent stylised game frames, and writes
back to the colour buffer, before post-processing. We believe this is the first work to stylise
in this way. The primary contributions of our work can be summarised as follows: 1) We
train a fast Stylisation network on both a real-world and a synthetic image dataset, capable
of producing fast high-quality artistic stylisations; 2) We present an approach that integrates
a trained stylisation network at an early stage of the rendering pipeline, avoiding the visual
artefacts and inconsistencies that occur when employing stylisation as a post-effect; 3) We
evaluate the results of our system qualitatively and quantitatively, demonstrating how the
games community can benefit from the NST field.

Figure 1: Our proposed framework injects NST as part of the 3D rendering pipeline.

2 Related Work

2.1 Image & Video NST
Gatys et al. [11] proposed a model that minimises a content loss and a style loss, based
on features extracted from pre-trained CNNs on object classification. Since this seminal
work, multiple NST approaches have emerged, proposing end-to-end systems trained on
singular styles that manage to improve upon the efficiency and time required to generate one
stylisation. These are capable of synthesising a stylised output with a single forward pass
through the network [20, 23, 53, 54]. While some models trained to capture the style of a
particular artist or a specific art genre [22, 43], and more efficient multiple-style-per-model
approaches were also developed [3, 8, 60], recently, the research has shifted to developing
arbitrary style transfer systems. The method of Huang and Belongie [15] suggested the use
of an Adaptive Instance Normalisation layer (AdaIN) that allows transferring the channel-
wise mean and variance feature statistics between the content and style feature activations,
thus achieving arbitrary style transfer. Other arbitrary-style-per-model methods were also
developed that improve upon the performance [1, 12, 16, 25, 37, 47, 59] or offer solutions
tailored to particular challenges [13, 30]. Meta networks were also employed [45], as well
as systems making use of the recently developed transformer architecture [7, 28, 32].

To alleviate the issue of temporal inconsistency across subsequent frames when video
is considered, Ruder et al. [41, 42] employed a temporal constraint based on optical flow
information. Typically, the optical flow map (calculated between two frames of the orig-
inal video) is used to warp the previous stylised frame to give an estimation of the next

Citation
Citation
{Gatys, Ecker, and Bethge} 2016

Citation
Citation
{Johnson, Alahi, and Fei-Fei} 2016

Citation
Citation
{Li and Wand} 2016

Citation
Citation
{Ulyanov, Lebedev, Vedaldi, and Lempitsky} 2016

Citation
Citation
{Ulyanov, Vedaldi, and Lempitsky} 2017

Citation
Citation
{Kotovenko, Sanakoyeu, Lang, and Ommer} 2019

Citation
Citation
{Sanakoyeu, Kotovenko, Lang, and Ommer} 2018

Citation
Citation
{Chen, Yuan, Liao, Yu, and Hua} 2017

Citation
Citation
{Dumoulin, Shlens, and Kudlur} 2017

Citation
Citation
{Zhang and Dana} 2018

Citation
Citation
{Huang and Belongie} 2017

Citation
Citation
{An, Xiong, Huan, and Luo} 2020

Citation
Citation
{Ghiasi, Lee, Kudlur, Dumoulin, and Shlens} 2017

Citation
Citation
{Huo, Jin, Li, Wu, Lai, Shi, and Gao} 2021

Citation
Citation
{Li, Fang, Yang, Wang, Lu, and Yang} 2017

Citation
Citation
{Park and Lee} 2019

Citation
Citation
{Svoboda, Anoosheh, Osendorfer, and Masci} 2020

Citation
Citation
{Xu, Wilber, Fang, Hertzmann, and Jin} 2018

Citation
Citation
{Hu, Jia, Liu, Bu, and Fu} 2020

Citation
Citation
{Liu, Yang, and Hall} 2021{}

Citation
Citation
{Shen, Yan, and Zeng} 2018

Citation
Citation
{Deng, Tang, Dong, Ma, Pan, Wang, and Xu} 2022

Citation
Citation
{Liu, Lin, He, Li, Wang, Li, Sun, Li, and Ding} 2021{}

Citation
Citation
{Luo, Han, Yang, and Zhang} 2022

Citation
Citation
{Ruder, Dosovitskiy, and Brox} 2016

Citation
Citation
{Ruder, Dosovitskiy, and Brox} 2017



IOANNOU AND MADDOCK: NST FOR COMPUTER GAMES 3

frame. This gives a temporal loss function that can be minimised during training. Other
work has subsequently improved the computation speed [9, 14] or demonstrated structure
and depth-preserving qualities [19, 27]. Gao et al. [10] developed a fast model that incor-
porates multiple styles, while arbitrary video style transfer models have also been proposed
[6, 31, 55, 58], some of which are extensions from image NST approaches with additional
temporal considerations [24, 27, 28].

2.2 NST in 3D Computer Games

Although methods exist for stylising three-dimensional data and can offer 3D artists diverse
options for generating or improving a game’s assets, no substantial efforts have been noted
for real-time in-game artistic stylisation. The image and video NST models [6, 10, 28, 31]
can potentially be integrated at the end of a computer game’s rendering pipeline, intercepting
each rendered frame and producing a stylised version of it. An example of this has been
exhibited by Unity’s implementation [5] which is based on the method of Ghiasi et al. [12]
that produces a stylised image from an input image in a single forward pass from the neural
network. Multi-style in-game style transfer is achieved allowing the viewer to change the
stylisation of the scene in real-time. Nonetheless, the implementation does not consider any
G-buffer or 3D information. Instead, it intercepts the final rendered 2D image (using an off-
screen buffer), which means it can be applied as a final ‘filter’ for any game. This also results
in unstable stylisations and causes the intended post-process effects being diminished.

The recent approach by Richter et al. [40] to enhancing the photorealism of computer-
generated imagery might be the first to take into account information from intermediate
buffers (G-buffers) that becomes available through a game engine’s rendering process. This
method, although explicitly focused on photorealistic enhancement, can be significantly im-
pactful to style transfer algorithms that consider the stylisation of game environments. Their
technique also works at the end of the rendering pipeline – the image enhancement network
outputs an enhanced image given an input rendered image. However, the image enhance-
ment network is fed with information about the geometry, materials, and lighting, extracted
from intermediate rendering buffers during training.

Similarly, the image-to-image translation method proposed by Mittermueller et al. [34]
trains a network to learn the mapping between low-poly game scenes to a synthetic dataset
compiled using the Red Dead Redemption 2 (RDR2) game. The mapping takes into account
intermediate data such as depth, normals, and albedo generated by conventional game ren-
dering pipelines, for improved image domain transfer. Although the developed EST-GAN
validates the effectiveness of G-buffer data for the generation of stylistic game scenes, it
does not utilise this information in real-time and does not demonstrate any impact on the
stability of sequential stylised game frames.

Integrating NST at the end of the 3D rendering pipeline is the only approach that has
been suggested for the synthesis of real-time photorealistic [40] or artistic [5] game worlds.
Nevertheless, the amount of post-processing that is executed, and the unpredictable camera
movement and scene shifts, do not allow for coherent and robust post-process stylisations.
Here we propose an approach for producing stable and aesthetically pleasing visual effects
in computer games by integrating a style transfer model before the post-process stage of the
3D computer game rendering pipeline.

Citation
Citation
{Gao, Gu, Zhang, and Yu} 2018

Citation
Citation
{Huang, Wang, Luo, Ma, Jiang, Zhu, Li, and Liu} 2017

Citation
Citation
{Ioannou and Maddock} 2023

Citation
Citation
{Liu and Zhu} 2021

Citation
Citation
{Gao, Li, Yin, and Yang} 2020

Citation
Citation
{Deng, Tang, Dong, Huang, Ma, and Xu} 2021

Citation
Citation
{Lu and Wang} 2022

Citation
Citation
{Wang, Yang, Xu, and Liu} 2020

Citation
Citation
{Wu, Zhu, Du, and Bai} 2022

Citation
Citation
{Li, Liu, Kautz, and Yang} 2019

Citation
Citation
{Liu and Zhu} 2021

Citation
Citation
{Liu, Lin, He, Li, Wang, Li, Sun, Li, and Ding} 2021{}

Citation
Citation
{Deng, Tang, Dong, Huang, Ma, and Xu} 2021

Citation
Citation
{Gao, Li, Yin, and Yang} 2020

Citation
Citation
{Liu, Lin, He, Li, Wang, Li, Sun, Li, and Ding} 2021{}

Citation
Citation
{Lu and Wang} 2022

Citation
Citation
{Deliot, Guinier, and Vanhoey} 2020

Citation
Citation
{Ghiasi, Lee, Kudlur, Dumoulin, and Shlens} 2017

Citation
Citation
{Richter, AlHaija, and Koltun} 2022

Citation
Citation
{Mittermueller, Ye, and Hlavacs} 2022

Citation
Citation
{Richter, AlHaija, and Koltun} 2022

Citation
Citation
{Deliot, Guinier, and Vanhoey} 2020



4 IOANNOU AND MADDOCK: NST FOR COMPUTER GAMES

3 Injecting NST into the 3D rendering pipeline

3.1 Style Transfer Network
The network architecture is shown in Figure 2. Similarly to state-of-the-art methods [18,
20, 29], we utilise a Transformation network fW , that intercepts an input image x and trans-
forms it into an output image ŷ via the mapping ŷ = fW (x). To improve upon the efficiency
and inference time required to generate a stylised frame given an input image, we reduce
the number of residual layers and remove the ReLU activation function from the first three
convolutional layers. The final configuration of our network consists of three convolutional
layers followed by instance normalisation, two residual layers (composed of convolutions,
instance normalisation, and ReLU), and three deconvolutional layers that upsample the input
and then perform convolution. The first two deconvolutional layers are followed by instance
normalisation and ReLU activation.

Figure 2: The Stylisation Network consists of three convolutional layers (Conv), two residual
layers (Res) and three deconvolutional layers (Deconv). Instance normalisation layers (IN)
and the ReLU activation function are included at the first two deconvolution layers.

3.1.1 Content & Style Losses

We use the perceptual loss functions introduced in the work of Johnson et al. [20] and employ
a pre-trained image recognition network (VGG-16 [46]) to produce feature representations
of the original and transformed images. Content loss is defined as the Euclidean distance
between the feature representations of the input image and the corresponding transformed
image, as extracted from the relu2_2 layer:

lφ0
content(ŷ,x) =

1
C jH jWj

∥φ
j

0 (ŷ)−φ
j

0 (x)∥
2
2 (1)

where φ0 is the image classification network, φ
j

0 represents the activations of the jth layer of
φ0, and H ×W ×C is the shape of the processed image.

The style is represented by features extracted from multiple layers of VGG-16 (J =
{relu1_2, relu2_2, relu3_3, relu4_3}). The Gram matrix G is then computed to give fea-
ture correlations that can be utilised to define the style loss function. This is then defined

Citation
Citation
{Ioannou and Maddock} 2022

Citation
Citation
{Johnson, Alahi, and Fei-Fei} 2016

Citation
Citation
{Liu, Cheng, Lai, and Rosin} 2017

Citation
Citation
{Johnson, Alahi, and Fei-Fei} 2016

Citation
Citation
{Simonyan and Zisserman} 2015



IOANNOU AND MADDOCK: NST FOR COMPUTER GAMES 5

as the squared Frobenius norm of the difference between the calculated Gram-based style
representations:

Lφ0, j
style(ŷ,y) = ∥Gφ0

j (ŷ)−Gφ0
j (y)∥2

F (2)

and it is summed up for all the layers j in J. Here, y and ŷ refer to the original style image
and the transformed image, respectively.

3.1.2 Depth Loss

Previous approaches that consider depth information during training [18, 19, 29] have shown
improvements to the synthesised results in terms of structure retainment and depth preserva-
tion performance. As the trained stylisation network is required to be used in a game setting
– and it is highly desired to sustain the depth of the stylised game frames – we utilise a depth
reconstruction network (MiDaS) [39] to define a depth reconstruction loss [18, 19]:

LMiDaS
depth (ŷ,x) = ∥MiDaS1(ŷ)−MiDaS1(x)∥2

2 (3)

3.1.3 Difference of Gaussians Loss

A particular issue that occurs in stylisation approaches is an undesired halo effect around
distinct parts of an image. This effect is compounded by the significance that is placed
on edges in human vision [33, 36] meaning that edge inconsistencies stand out. We use
the Difference-of-Gaussians (DoG) operator in order to improve upon the global and local
structure preservation of stylised image frames, and thus attempt to alleviate the issue of the
undesired halo effect.

Inspired by the neural processing in the retina of the human eye, the DoG response is
equivalent to a band-pass filter that discards most of the spatial frequencies that are present
in an image. The DoG operator is derived from the concept of convolving an image with
two Gaussian kernels of different standard deviations and then taking the difference between
the two convolved images. This feature enhancement algorithm has been shown to produce
aesthetic edge lines and has been previously utilised for image stylisation [57]. We, therefore,
define a DoG loss that is based on the difference between the DoG responses (DoGR) of the
original image x and the corresponding stylised image ŷ:

LDoG(ŷ,x) = ∥DoGR(ŷ)−DoGR(x)∥2
2 (4)

3.1.4 Training Details

The Stylisation Network is trained for 2 epochs with a batch size of 2 and a learning rate of
1× 10−3. The content and style weights are set to 1× 105 and 1× 1010, respectively. The
weight for the depth loss and the DoG loss is set to 1×103. The Adam optimizer [21] is em-
ployed with a learning rate of 1×10−3. The setting of the hyperparameters is adopted from
[18] – this maintains the optimal content-style ratio as in the implementation of Johnson et
al. [20]. To accommodate robust stylisation of game environments and synthetic scenes,
both real-world images and frames from computer-generated sources are used to train the
stylisation network. The MS COCO dataset [26] is used, mixed with frames from the MPI
Sintel training set [2]. The data is shuffled and all the images are resized to 360×360 during
training. In order for the trained Stylisation network to be suitable for in-game stylisation,

Citation
Citation
{Ioannou and Maddock} 2022

Citation
Citation
{Ioannou and Maddock} 2023

Citation
Citation
{Liu, Cheng, Lai, and Rosin} 2017

Citation
Citation
{Ranftl, Lasinger, Hafner, Schindler, and Koltun} 2020

Citation
Citation
{Ioannou and Maddock} 2022

Citation
Citation
{Ioannou and Maddock} 2023

Citation
Citation
{Marr and Hildreth} 1980

Citation
Citation
{Palmer} 1999

Citation
Citation
{Winnem{ö}ller, Kyprianidis, and Olsen} 2012

Citation
Citation
{Kingma and Ba} 2014

Citation
Citation
{Ioannou and Maddock} 2022

Citation
Citation
{Johnson, Alahi, and Fei-Fei} 2016

Citation
Citation
{Lin, Maire, Belongie, Hays, Perona, Ramanan, Doll{á}r, and Zitnick} 2014

Citation
Citation
{Butler, Wulff, Stanley, and Black} 2012



6 IOANNOU AND MADDOCK: NST FOR COMPUTER GAMES

we export the trained model to the ONNX [35] format. This is supported by Unity and the
Barracuda package [52].

Figure 3: Overview of the modified 3D rendering pipeline. The NST module is added before
the Post-process stage whilst the colour buffer information is available for read and write.

3.2 In-game Stylisation
To accommodate real-time in-game stylisation we use the Unity game engine and the High
Definition Rendering Pipeline (HDRP) [48]. Custom Passes can be configured within Unity’s
rendering pipeline and can be executed at certain points during the HDRP render loop. Six
injection points for a Custom Pass are offered, with a selection of buffers being available at
each. The injection points are: Before Rendering, After Opaque, Depth and Normal, Before
Pre-Refraction, Before Transparent, Before Post-Process, and After Post Process. To gener-
ate a stylised image, it is necessary to read and write to the colour buffer that is available after
the Opaque, Depth and Normal stage. In order for the stylisation to affect the transparent
objects in the scene, we opt to inject the custom pass before the Post-Process stage.

The overall modified Unity HDRP rendering pipeline is depicted in Figure 3. During
rendering, HDRP writes colour data from visible objects (renderers) in the scene to the colour
buffer. During a custom pass, a depth pyramid and a colour pyramid are created (as shown
in Figure 3). The colour pyramid constitutes an iterative series of mipmaps, crafted by the
HDRP, extracted from the colour buffer at a specific juncture within the rendering pipeline.
The NST Module is inserted after the Distortion stage and before the Post-process stage,
intercepting the colour buffer mipmap and producing an artistic stylisation for each frame
(this is supported by the Barracuda package [52] that allows for neural network inference).
The synthesised texture is then passed to a custom compute shader that writes the colour
to the camera colour buffer. This allows for the Post-process stage to utilise the stylised
frames, before the final render. Our proposed system is capable of producing stable real-
time stylised frames free from undesired artefacts and flickering effects. Embedding the
NST module earlier in the rendering pipeline also allows for the post-process effects (such
as depth of field, bloom, or motion blur) to effectively be visible, adding to the look and feel

Citation
Citation
{ONNX} 2019

Citation
Citation
{Technologies} 2023{}

Citation
Citation
{Technologies} 2021

Citation
Citation
{Technologies} 2023{}



IOANNOU AND MADDOCK: NST FOR COMPUTER GAMES 7

of the game. Such effects would be diminished if the stylisation effect was applied at the
final render – examples of this are shown in Figure 5.

4 Results & Discussion
Our NST system is embedded in the rendering pipeline, intercepting each G-buffer colour
frame and producing a stylised version that is then passed through the Post-process stage.
Figure 4 demonstrates some final rendered frames for different reference style images and
for different game scenes. Our method is capable of producing robust stylisations even for
complicated scenes with difficult lighting. The final renders do not suffer from undesired
artefacts or flickering effects, while the halo effect around the objects in the scene is signif-
icantly reduced. The following subsections further demonstrate temporally consistent styli-
sations of frames from various open-source games [38, 49, 50, 51] and compare the results
against state-of-the-art methods in image and video style transfer. Videos of our results and
comparisons to state-of-the-art methods are included in the supplementary material.

Figure 4: Our approach for different style images and different game scenes. Original con-
tent images are above stylised frames. Adjacent frames show temporal stability.

4.1 Qualitative Results
Qualitative comparisons against four state-of-the-art methods – AdaAttN [28], CSBNet [31],
MCCNet [6], and FVMST [10] – are shown in Figure 5. This includes stylisations for two
consecutive frames for two different game scenes and two different style images.

Figure 5 shows that AdaAttN [28] preserves much of the content information, however,
the stylisation effect is not very visible – the yellow colour that is eminent in the style image
is absent from the stylised frames (Figure 5(b)). The video NST methods, CSBNet [31]
and MCCNet [6], reproduce the style image more faithfully than AdaAttN, but they create
undesired artefacts such as the yellow halo around the trees that are visually distinguished
from the background. FVMST [10] also captures the style quite well, but generates a white
artefact encircling the mountain’s background edge and it produces a sudden shift of the sky

Citation
Citation
{POLYGONAUTIC} 2020

Citation
Citation
{Technologies} 2022{}

Citation
Citation
{Technologies} 2022{}

Citation
Citation
{Technologies} 2023{}

Citation
Citation
{Liu, Lin, He, Li, Wang, Li, Sun, Li, and Ding} 2021{}

Citation
Citation
{Lu and Wang} 2022

Citation
Citation
{Deng, Tang, Dong, Huang, Ma, and Xu} 2021

Citation
Citation
{Gao, Li, Yin, and Yang} 2020

Citation
Citation
{Liu, Lin, He, Li, Wang, Li, Sun, Li, and Ding} 2021{}

Citation
Citation
{Lu and Wang} 2022

Citation
Citation
{Deng, Tang, Dong, Huang, Ma, and Xu} 2021

Citation
Citation
{Gao, Li, Yin, and Yang} 2020



8 IOANNOU AND MADDOCK: NST FOR COMPUTER GAMES

Figure 5: Comparison against state-of-the-art approaches. Top row: original frames, with
the style image top left; two adjacent frames from two different game scenes are shown. We
provide zoomed-in cut-outs on the right of each two-frame sequence, for better comparisons.
Our method produces robust stylisations that capture the style image more efficiently and
preserve content and luminance information of the scene more effectively in comparison
with the state-of-the-art approaches.

colour (from light, it turns to dark blue/black) that is not visible in the original frames. Our
approach reproduces the style image faithfully and eliminates the undesired effects that are
visible in the results of the state-of-the-art methods. The structure of the original frames is
preserved comparably to the stylisations of AdaAttN but with higher stylisation intensity and
better preservation of the luminance and lighting of the scene.

To demonstrate the effectiveness of our approach, we also include close-ups of consec-
utive frames of a game scene that includes a moving 3D object in a complex background.
When looking at the zoomed-in cut-outs in Figure 5(a), the halo effect around the object’s
edge is more noticeable in the generated frames of AdaAttN [28], CSBNet [31], and MC-
CNet [6], while the stylisations of FVMST [10] create a disturbing white blob. In addition,
the close-ups provide strong evidence of the capability of our approach to retaining the lu-
minance in the scene and the game’s post-effects. The prominent depth-of-field effect in the
original frames is completely ignored when the stylisation is performed at the final render
using state-of-the-art methods that enhance the details on the background. Our system makes
the 3D object stand out and preserves the lighting and the game’s overall look and feel.

Citation
Citation
{Liu, Lin, He, Li, Wang, Li, Sun, Li, and Ding} 2021{}

Citation
Citation
{Lu and Wang} 2022

Citation
Citation
{Deng, Tang, Dong, Huang, Ma, and Xu} 2021

Citation
Citation
{Gao, Li, Yin, and Yang} 2020



IOANNOU AND MADDOCK: NST FOR COMPUTER GAMES 9

4.2 Quantitative Results

For quantitative comparisons, frames are extracted from 4 different games and 12 different
gameplays, including indoor and outdoor scenes, featuring moving objects and complicated
lighting. This results in an evaluation dataset of 2100 frames (9 gameplays × 200 frames
and 3 gameplays × 100 frames), and we evaluate utilising 10 different style images. The
average results are reported in Table 1.

To quantitatively gauge the performance of our method in video stability and temporal
coherence we utilise the warping error that is calculated as the difference between a warped
next frame (using optic flow) and the original next frame. FlowNetS [17] is used to compute
the optical flow of the original videos. In addition, we employ the LPIPS (Learned Perceptual
Image Patch Similarity) metric [61] to measure the average perceptual distances between the
adjacent frames in order to verify the smoothness of the stylised game sequences. The results
show that our approach is superior to the state-of-the-art methods in generating temporally
consistent in-game stylisations.

Method Warping Er. ↓ LPIPS Er. ↓ SSIM ↑ SIFID ↓ Lc ↓ Ls ↓
AdaAttN [28] 1.6477 0.3217 0.7820 1.6115 0.4945 1.0391
CSBNet [31] 1.7458 0.3908 0.6370 2.2468 0.8674 1.0053
MCCNet [6] 1.6519 0.3547 0.6637 1.5555 0.8065 1.0042
FVMST [10] 1.8524 0.3215 0.5855 2.2529 0.7834 1.0077
Ours (image) 1.6764 0.3602 0.6740 1.2063 0.6532 0.9808
Ours (game) 1.5798 0.2930 0.6057 1.8679 0.7830 1.0612

Table 1: Quantitative results. Warping Error and LPIPS error (both in the form ×10) capture
the smoothness of the generated video. SSIM and Lc relate to content preservation, and
SIFID and Ls quantify the style performance. Results are given for our NST system injected
in the game’s rendering pipeline (game) and for the NST network applied as a post-effect
(image). Bold values in Warping Error and LPIPS Error indicate our (in game) approach is
best at preserving temporal consistency.

Perceptual metrics are employed to quantitatively assess the stylisation quality. SSIM [56]
and Content error (Lc) [11] are used to evaluate the effectiveness of the methods in retaining
content information; SIFID [44] and Style error [11] are used to evaluate style performance.
Our system manages to preserve content adequately. Whilst our algorithm’s effectiveness in
reproducing the style image is sufficient, some stylisation qualities are lost when the post-
process effects are performed on top of the stylisations. In order to retain the intended
post-effects applied to a game, certain aspects of the style likeness to the original image are
traded off. Arguably, this compromise can be deemed desirable in a game setting and, as has
been demonstrated, this trade-off leads to more consistent and temporally stable stylisations.

4.3 Ablation Study

Figure 6 demonstrates example results of our approach under different configurations. In-
game stylisation has a significant impact on temporal coherence, in comparison to stylising
each rendered frame as a post-effect (Section 4.2). Here, we show that the latter also pro-
duces less appealing stylisations, with much of the content information being discarded. In
addition, training without the DoG Loss results in more visible halos around the objects in

Citation
Citation
{Ilg, Mayer, Saikia, Keuper, Dosovitskiy, and Brox} 2017

Citation
Citation
{Zhang, Isola, Efros, Shechtman, and Wang} 2018

Citation
Citation
{Liu, Lin, He, Li, Wang, Li, Sun, Li, and Ding} 2021{}

Citation
Citation
{Lu and Wang} 2022

Citation
Citation
{Deng, Tang, Dong, Huang, Ma, and Xu} 2021

Citation
Citation
{Gao, Li, Yin, and Yang} 2020

Citation
Citation
{Wang, Bovik, Sheikh, and Simoncelli} 2004

Citation
Citation
{Gatys, Ecker, and Bethge} 2016

Citation
Citation
{Shaham, Dekel, and Michaeli} 2019

Citation
Citation
{Gatys, Ecker, and Bethge} 2016



10 IOANNOU AND MADDOCK: NST FOR COMPUTER GAMES

Figure 6: Ablation study on the impact of the different components of our system. Each
column shows a zoomed-in comparison between our method (in-game) trained with all com-
ponents (green) and our stylisation network (a) applied as a post-effect, (b) trained without
DoG Loss (c) trained without Depth Loss, and (d) trained without the MPI Sintel data (red).

the scene, whereas training with DoG Loss leads to generated frames with enhanced object
stylisation and reduced boundary artefacts. The same applies to Depth Loss, as our method
synthesises visibly improved results when depth is considered. The inclusion of the MPI
Sintel dataset also has an impact on the performance – the stylisation network trained only
on the MS COCO dataset neglects the synthetic nature of the game and struggles to generate
frames that retain the content adequately, producing undesired effects.

4.4 Limitations

To demonstrate the effectiveness of applying NST as part of the rendering pipeline of a
computer game, we have trained a single-style-per-network model. Future work could ex-
periment with arbitrary-style-per-model networks [6, 15, 28] which would provide the user
with the option to upload and use their own reference style image. Another important con-
sideration in applying NST in a game setting is running time. We reduced the number of
residual layers and removed activation from the initial convolution layers to improve upon
the inference time of the trained network which requires approximately 0.9 seconds to stylise
an image of size 512 × 512. When injecting stylisation in the rendering pipeline the frame
rate of a game running in Unity at Full HD resolution drops to ∼10fps. Utilising a more
lightweight network architecture (arbitrary style transfer networks report better inference
time, e.g., AdaIN [15]: 0.065 seconds) could result in stylised game environments running
at higher frame rates.

5 Conclusion
We have proposed a novel approach for injecting NST into a computer graphics render-
ing pipeline. Our NST framework is capable of producing coherent and temporally stable
stylised frames in computer games. Our NST module intercepts frames from the colour
buffer and synthesises artistic stylisations that are then written back to the camera colour
buffer. Robust stylisations are achieved without interfering with the applied post-process ef-
fects. We demonstrate qualitative and quantitative results that reveal a promising new avenue
for integrating NST within game development processes.

Citation
Citation
{Deng, Tang, Dong, Huang, Ma, and Xu} 2021

Citation
Citation
{Huang and Belongie} 2017

Citation
Citation
{Liu, Lin, He, Li, Wang, Li, Sun, Li, and Ding} 2021{}

Citation
Citation
{Huang and Belongie} 2017



IOANNOU AND MADDOCK: NST FOR COMPUTER GAMES 11

Acknowledgements
This research was funded by the EPSRC.

References
[1] Jie An, Haoyi Xiong, Jun Huan, and Jiebo Luo. Ultrafast photorealistic style transfer

via neural architecture search. Proceedings of the AAAI Conference on Artificial In-
telligence, 34(07):10443–10450, Apr. 2020. doi: 10.1609/aaai.v34i07.6614. URL
https://ojs.aaai.org/index.php/AAAI/article/view/6614.

[2] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A naturalistic open source
movie for optical flow evaluation. In A. Fitzgibbon et al. (Eds.), editor, European Conf.
on Computer Vision (ECCV), Part IV, LNCS 7577, pages 611–625. Springer-Verlag,
October 2012.

[3] Dongdong Chen, Lu Yuan, Jing Liao, Nenghai Yu, and Gang Hua. Stylebank: An
explicit representation for neural image style transfer. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1897–1906, 2017.

[4] Tian Qi Chen and Mark Schmidt. Fast patch-based style transfer of arbitrary style.
arXiv preprint arXiv:1612.04337, 2016.

[5] Thomas Deliot, Florent Guinier, and Kenneth Vanhoey. Real-time style transfer in
unity using deep neural networks, 2020. URL https://blog.unity.com/eng
ine-platform/real-time-style-transfer-in-unity-using-dee
p-neural-networks.

[6] Yingying Deng, Fan Tang, Weiming Dong, Haibin Huang, Chongyang Ma, and Chang-
sheng Xu. Arbitrary video style transfer via multi-channel correlation. Proceedings
of the AAAI Conference on Artificial Intelligence, 35(2):1210–1217, May 2021. doi:
10.1609/aaai.v35i2.16208. URL https://ojs.aaai.org/index.php/AAA
I/article/view/16208.

[7] Yingying Deng, Fan Tang, Weiming Dong, Chongyang Ma, Xingjia Pan, Lei Wang,
and Changsheng Xu. Stytr2: Image style transfer with transformers. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11326–
11336, 2022.

[8] Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur. A learned representation
for artistic style. In International Conference on Learning Representations, 2017. URL
https://openreview.net/forum?id=BJO-BuT1g.

[9] Chang Gao, Derun Gu, Fangjun Zhang, and Yizhou Yu. Reconet: Real-time coherent
video style transfer network, 2018.

[10] Wei Gao, Yijun Li, Yihang Yin, and Ming-Hsuan Yang. Fast video multi-style transfer.
In Proceedings of the IEEE/CVF winter conference on applications of computer vision,
pages 3222–3230, 2020.

https://ojs.aaai.org/index.php/AAAI/article/view/6614
https://blog.unity.com/engine-platform/real-time-style-transfer-in-unity-using-deep-neural-networks
https://blog.unity.com/engine-platform/real-time-style-transfer-in-unity-using-deep-neural-networks
https://blog.unity.com/engine-platform/real-time-style-transfer-in-unity-using-deep-neural-networks
https://ojs.aaai.org/index.php/AAAI/article/view/16208
https://ojs.aaai.org/index.php/AAAI/article/view/16208
https://openreview.net/forum?id=BJO-BuT1g


12 IOANNOU AND MADDOCK: NST FOR COMPUTER GAMES

[11] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Image style transfer using
convolutional neural networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2414–2423, 2016.

[12] Golnaz Ghiasi, Honglak Lee, Manjunath Kudlur, Vincent Dumoulin, and Jonathon
Shlens. Exploring the structure of a real-time, arbitrary neural artistic stylization net-
work. arXiv preprint arXiv:1705.06830, 2017.

[13] Zhiyuan Hu, Jia Jia, Bei Liu, Yaohua Bu, and Jianlong Fu. Aesthetic-aware image style
transfer. In Proceedings of the 28th ACM International Conference on Multimedia,
pages 3320–3329, 2020.

[14] Haozhi Huang, Hao Wang, Wenhan Luo, Lin Ma, Wenhao Jiang, Xiaolong Zhu,
Zhifeng Li, and Wei Liu. Real-time neural style transfer for videos. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 783–791,
2017.

[15] Xun Huang and Serge Belongie. Arbitrary style transfer in real-time with adaptive
instance normalization. In Proceedings of the IEEE International Conference on Com-
puter Vision, pages 1501–1510, 2017.

[16] Jing Huo, Shiyin Jin, Wenbin Li, Jing Wu, Yu-Kun Lai, Yinghuan Shi, and Yang
Gao. Manifold alignment for semantically aligned style transfer. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 14861–14869, 2021.

[17] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy, and
Thomas Brox. Flownet 2.0: Evolution of optical flow estimation with deep networks.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 2462–2470, 2017.

[18] Eleftherios Ioannou and Steve Maddock. Depth-aware neural style transfer using in-
stance normalization. In Computer Graphics & Visual Computing (CGVC) 2022. Eu-
rographics Digital Library, 2022.

[19] Eleftherios Ioannou and Steve Maddock. Depth-aware neural style transfer for videos.
Computers, 12(4):69, 2023.

[20] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style
transfer and super-resolution. In European conference on computer vision, pages 694–
711. Springer, 2016.

[21] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[22] Dmytro Kotovenko, Artsiom Sanakoyeu, Sabine Lang, and Bjorn Ommer. Content
and style disentanglement for artistic style transfer. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 4422–4431, 2019.

[23] Chuan Li and Michael Wand. Precomputed real-time texture synthesis with markovian
generative adversarial networks. In Computer Vision–ECCV 2016: 14th European
Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part III
14, pages 702–716. Springer, 2016.



IOANNOU AND MADDOCK: NST FOR COMPUTER GAMES 13

[24] Xueting Li, Sifei Liu, Jan Kautz, and Ming-Hsuan Yang. Learning linear transforma-
tions for fast image and video style transfer. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages 3809–3817, 2019.

[25] Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu, and Ming-Hsuan Yang.
Universal style transfer via feature transforms. Advances in neural information pro-
cessing systems, 30, 2017.

[26] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ra-
manan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in
context. In European conference on computer vision, pages 740–755. Springer, 2014.

[27] Shiguang Liu and Ting Zhu. Structure-guided arbitrary style transfer for artistic image
and video. IEEE Transactions on Multimedia, 2021.

[28] Songhua Liu, Tianwei Lin, Dongliang He, Fu Li, Meiling Wang, Xin Li, Zhengxing
Sun, Qian Li, and Errui Ding. Adaattn: Revisit attention mechanism in arbitrary neural
style transfer. In Proceedings of the IEEE/CVF international conference on computer
vision, pages 6649–6658, 2021.

[29] Xiao-Chang Liu, Ming-Ming Cheng, Yu-Kun Lai, and Paul L Rosin. Depth-aware neu-
ral style transfer. In Proceedings of the Symposium on Non-Photorealistic Animation
and Rendering, pages 1–10, 2017.

[30] Xiao-Chang Liu, Yong-Liang Yang, and Peter Hall. Learning to warp for style transfer.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pages 3702–3711, 2021.

[31] Haofei Lu and Zhizhong Wang. Universal video style transfer via crystallization, sepa-
ration, and blending. In Proc. Int. Joint Conf. on Artif. Intell.(IJCAI), volume 36, pages
4957–4965, 2022.

[32] Xuan Luo, Zhen Han, Lingkang Yang, and Lingling Zhang. Consistent style transfer.
arXiv preprint arXiv:2201.02233, 2022.

[33] David Marr and Ellen Hildreth. Theory of edge detection. Proceedings of the Royal
Society of London. Series B. Biological Sciences, 207(1167):187–217, 1980.

[34] Martina Mittermueller, Zhanxiang Ye, and Helmut Hlavacs. EST-GAN: Enhancing
style transfer gans with intermediate game render passes. In 2022 IEEE Conference on
Games (CoG), pages 25–32, 2022. doi: 10.1109/CoG51982.2022.9893673.

[35] ONNX. Open neural network exchange, 2019. URL https://onnx.ai/.

[36] Stephen E Palmer. Vision science: Photons to phenomenology. MIT press, 1999.

[37] Dae Young Park and Kwang Hee Lee. Arbitrary style transfer with style-attentional
networks. In proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 5880–5888, 2019.

[38] POLYGONAUTIC. Seed hunter, 2020. URL https://assetstore.unity.c
om/packages/3d/environments/seed-hunter-143414.

https://onnx.ai/
https://assetstore.unity.com/packages/3d/environments/seed-hunter-143414
https://assetstore.unity.com/packages/3d/environments/seed-hunter-143414


14 IOANNOU AND MADDOCK: NST FOR COMPUTER GAMES

[39] René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, and Vladlen Koltun.
Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-
dataset transfer. IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 2020.

[40] Stephan R Richter, Hassan Abu AlHaija, and Vladlen Koltun. Enhancing photorealism
enhancement. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(2):
1700–1715, 2022.

[41] Manuel Ruder, Alexey Dosovitskiy, and Thomas Brox. Artistic style transfer for
videos. In Bodo Rosenhahn and Bjoern Andres, editors, Pattern Recognition, pages
26–36, Cham, 2016. Springer International Publishing. ISBN 978-3-319-45886-1.

[42] Manuel Ruder, Alexey Dosovitskiy, and Thomas Brox. Artistic style transfer for videos
and spherical images. CoRR, 2017. URL http://arxiv.org/abs/1708.045
38.

[43] Artsiom Sanakoyeu, Dmytro Kotovenko, Sabine Lang, and Bjorn Ommer. A style-
aware content loss for real-time hd style transfer. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 698–714, 2018.

[44] Tamar Rott Shaham, Tali Dekel, and Tomer Michaeli. Singan: Learning a generative
model from a single natural image. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 4570–4580, 2019.

[45] Falong Shen, Shuicheng Yan, and Gang Zeng. Neural style transfer via meta networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 8061–8069, 2018.

[46] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition, 2015.

[47] Jan Svoboda, Asha Anoosheh, Christian Osendorfer, and Jonathan Masci. Two-stage
peer-regularized feature recombination for arbitrary image style transfer. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
13816–13825, 2020.

[48] Unity Technologies. High definition render pipeline overview: High definition rp:
12.1.12, 2021. URL https://docs.unity.cn/Packages/com.unity.r
ender-pipelines.high-definition@12.1/manual/index.html.

[49] Unity Technologies. Unity-technologies/fontainebleaudemo: Fontainebleau demo,
2022. URL https://github.com/Unity-Technologies/Fontaine
bleauDemo.

[50] Unity Technologies. Unity terrain - hdrp demo scene, 2022. URL https://asse
tstore.unity.com/packages/3d/environments/unity-terrain-h
drp-demo-scene-213198.

[51] Unity Technologies. Book of the dead: Environment: Hdrp: Tutorial projects, 2023.
URL https://assetstore.unity.com/packages/essentials/tut
orial-projects/book-of-the-dead-environment-hdrp-121175.

http://arxiv.org/abs/1708.04538
http://arxiv.org/abs/1708.04538
https://docs.unity.cn/Packages/com.unity.render-pipelines.high-definition@12.1/manual/index.html
https://docs.unity.cn/Packages/com.unity.render-pipelines.high-definition@12.1/manual/index.html
https://github.com/Unity-Technologies/FontainebleauDemo
https://github.com/Unity-Technologies/FontainebleauDemo
https://assetstore.unity.com/packages/3d/environments/unity-terrain-hdrp-demo-scene-213198
https://assetstore.unity.com/packages/3d/environments/unity-terrain-hdrp-demo-scene-213198
https://assetstore.unity.com/packages/3d/environments/unity-terrain-hdrp-demo-scene-213198
https://assetstore.unity.com/packages/essentials/tutorial-projects/book-of-the-dead-environment-hdrp-121175
https://assetstore.unity.com/packages/essentials/tutorial-projects/book-of-the-dead-environment-hdrp-121175


IOANNOU AND MADDOCK: NST FOR COMPUTER GAMES 15

[52] Unity Technologies. Introduction to barracuda: Barracuda: 3.0.1, 2023. URL https:
//docs.unity3d.com/Packages/com.unity.barracuda@3.0/manu
al/index.html.

[53] Dmitry Ulyanov, Vadim Lebedev, Andrea Vedaldi, and Victor S Lempitsky. Texture
networks: Feed-forward synthesis of textures and stylized images. In ICML, volume 1,
page 4, 2016.

[54] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Improved texture networks:
Maximizing quality and diversity in feed-forward stylization and texture synthesis. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 6924–6932, 2017.

[55] Wenjing Wang, Shuai Yang, Jizheng Xu, and Jiaying Liu. Consistent video style trans-
fer via relaxation and regularization. IEEE Transactions on Image Processing, 29:
9125–9139, 2020.

[56] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality
assessment: from error visibility to structural similarity. IEEE transactions on image
processing, 13(4):600–612, 2004.

[57] Holger Winnemöller, Jan Eric Kyprianidis, and Sven C Olsen. Xdog: An extended
difference-of-gaussians compendium including advanced image stylization. Computers
& Graphics, 36(6):740–753, 2012.

[58] Zijie Wu, Zhen Zhu, Junping Du, and Xiang Bai. Ccpl: Contrastive coherence preserv-
ing loss for versatile style transfer. In Computer Vision–ECCV 2022: 17th European
Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XVI, pages 189–
206. Springer, 2022.

[59] Zheng Xu, Michael Wilber, Chen Fang, Aaron Hertzmann, and Hailin Jin. Learn-
ing from multi-domain artistic images for arbitrary style transfer. arXiv preprint
arXiv:1805.09987, 2018.

[60] Hang Zhang and Kristin Dana. Multi-style generative network for real-time transfer.
In Proceedings of the European Conference on Computer Vision (ECCV) Workshops,
pages 0–0, 2018.

[61] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The
unreasonable effectiveness of deep features as a perceptual metric. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 586–595,
2018.

https://docs.unity3d.com/Packages/com.unity.barracuda@3.0/manual/index.html
https://docs.unity3d.com/Packages/com.unity.barracuda@3.0/manual/index.html
https://docs.unity3d.com/Packages/com.unity.barracuda@3.0/manual/index.html

