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Abstract

As video games evolve into expansive, detailed worlds, visual quality becomes essen-
tial, yet increasingly challenging. Traditional testing methods, limited by resources, face
difficulties in addressing the plethora of potential bugs. Machine learning offers scalable
solutions; however, heavy reliance on large labeled datasets remains a constraint. Ad-
dressing this challenge, we propose a novel method, utilizing unlabeled gameplay and
domain-specific augmentations to generate datasets & self-supervised objectives used
during pre-training or multi-task settings for downstream visual bug detection. Our
methodology uses weak-supervision to scale datasets for the crafted objectives and fa-
cilitates both autonomous and interactive weak-supervision, incorporating unsupervised
clustering and/or an interactive approach based on text and geometric prompts. We
demonstrate on first-person player clipping/collision bugs (FPPC) within the expansive
Giantmap game world, that our approach is very effective, improving over a strong su-
pervised baseline in a practical, very low-prevalence, low data regime (0.336 → 0.550 F1
score). With just 5 labeled "good" exemplars (i.e., 0 bugs), our self-supervised objective
alone captures enough signal to outperform the low-labeled supervised settings. Building
on large-pretrained vision models, our approach is adaptable across various visual bugs.
Our results suggest applicability in curating datasets for broader image and video tasks
within video games beyond visual bugs.

1 Background & Introduction
Visual quality in video games is one of the key drivers of satisfaction with customers. With
modern games transitioning towards expansive, open worlds with intricate visuals and sys-
tems, the potential for bugs rapidly grows. Traditional manual testing methods, constrained
by time and resources, grapple with these challenges. Advances in Computer Vision (CV)
and Machine Learning (ML) present promising alternatives, offering automated and scalable
visual testing solutions, thereby reallocating resources to explore other game dimensions
[24]. Notably, the success of deep learning in CV is largely credited to extensive labeled
datasets [11, 22], often curated from the vast quantitites of digital content on the web. How-
ever, curating these massive labeled datasets for a single game is impractical. Manual cap-
turing and labeling of visual bugs at scale would render detection methods redundant, more
so given the rarity of such bugs. Computer vision based methods recently proposed facilitate
automated visual testing at scale by 1. leveraging game engines to increase data availability
amenable to deep learning approaches [23, 33, 34, 39] and/or 2. using anomaly detection
based approaches treating bugs as out of distribution (OOD) occurrences from normal frames
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[40]. While access to game engines endow greater data availability and control over diver-
sity, the non-stationary nature of games requires an evolving set of data generated for every
new asset across multiple factors (environment, lighting, etc.) for any given game title. Ad-
ditionally, the limited testing window in a game development cycle places emphasis on the
speed of adaptation of any particular detection method. Addressing these challenges, we pro-
pose using unlabeled gameplay video paired with domain-specific augmentation techniques
to derive objectives for visual bug detection models. This strategy is useful in the low-
labeled settings often present during game development. Specifically, our method (fig. 1)
utilizes large-pretrained vision models [20, 29] also termed foundation models [5] along
with domain specific augmentation strategies motivated by [14] to formulate self-supervised
objectives for which we scale datasets through weak-supervision. Self-supervised learning
(SSL) seeks to learn from unlabeled data through optimization of a defined surrogate ob-
jective, which is then transferred to downstream target tasks [2]. SSL has shown to learn
transferable representations across multiple domains including CV [8, 15, 17, 18]. Weak
Supervision leverages noisy annotation sources to expediently generate and scale noisily la-
beled datasets [32, 41], recently demonstrating effectiveness in training large-scale models
across multiple domains [20, 29, 30]. Interactive weak supervision furthers this via an inter-
active process [4, 27] merging domain expertise with scalability of weak supervision. Our
methodology uses domain-specific SSL objectives that are scaled through weak supervision,
leveraging large pre-trained models and integrating text and geometric prompts for efficient
interaction. We demonstrate the generality of our method by targeting a challenging visual
bug-type, egocentric/first-person player clipping. Moreover, from analyzing our results we
suggest our method can be adapted to curate extensive datasets for a range of image and
video analysis tasks in video games, extending beyond visual bug detection.

The main contributions of this work are summarized as follows:

1. Empirical Observations on ViT Performance: We observe that when trained with
a self-supervised method, DINOv1, a. ViT surpasses traditional ResNet architectures,
and b. DINO rivals the performance of supervised pre-training on IN1K in low-labeled
and few-shot settings for visual bugs.

2. Development of a Novel Methodology: Building on the aforementioned observa-
tions, we introduce a flexible technique that uses weak-supervision to scale a self-
supervised objective. This approach melds zero-shot segmentation (Segment-Anything)
and domain-specific augmentations. Notably, our method consistently delivers strong
results across practical out-of-distribution (OOD) contexts.

3. Extension via Clustering and Filtering: We integrate a filtering step to enhance
performance using unsupervised clustering and text-image models such as CLIP, of-
fering two distinct avenues: automated or text-interactive weak supervision. The latter
enables non-ML practitioners to add preferable inductive biases to guide the system
through simple text and geometric prompts.

4. Efficient Dataset Curation: Our research underscores the potential for efficient dataset
curation. Given a handful of labeled "good" exemplars and a small amount of do-
main expertise, datasets can be curated autonomously. From these we can craft objec-
tives for standalone few-shot models, pre-training, or multi-task scenarios in low-data
regimes.
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Figure 1: General overview of our method: 1. Segmentation Stage: Given unlabeled gameplay video,
we apply a geometric promptable segmentation model (SAM) to automatically extract masks. 2. Fil-
tering Stage: The obtained masks are then filtered either in an unsupervised manner and/or optionally
via text-interactive filtering using text-image model (CLIP). 3. Augmentation Stage: Labeled ‘good’
target instances, and/or unlabeled target instances, are augmented using the filtered masks producing
samples used to train a surrogate objective.

2 Approach
Several practical challenges arise in the domain of visual bug detection, which shape our
objectives. Firstly, there is the issue of limited labeled data. The timeframes during which
visual testing can be conducted are narrow, especially with fresh content. Methods amenable
to low-data regimes and/or faster transfer learning are highly coveted. A second is access to
source code; engines such as [13, 36] continue to integrate ML features increasing data for
models to consume, yet this is impractical to scale across every game (eg. building hooks into
every new sub-release of a given game). We seek methods that can be applied in scenarios
where access to the source code is not guaranteed. Related to this is the notion of out-
of-distribution (OOD) scenarios, namely that even if we could gather data at a given point
during development, as new content is added we want our model to adapt to new scenarios
with minimal new data. An additional point here is that our input data during test time is
constrained to RGB frames. Moreover, a third practical constraint is the notion that bugs are
often rare and performant methods in low-prevalence scenarios are valuable.

2.1 Datasets
We use the Giantmap-5 (now GM4 as one object was removed) environment and active area
as introduced in [1], developed in Unreal [13]. We further extend it by introducing 46 new
objects of interest (OOI) shown in fig. 2. In this study, we treat the Giantmap environment
as our target video game title for our chosen visual bug, first-person player clipping (FPPC).
FPPC manifests when collision meshes for either the player or object are set incorrectly or
naively creating visual aberrations that would not occur in the physical world, see fig. 2 of
FPPC on the 4 objects on our GM4 environment. From this environment we create i.i.d.
screenshots programmatically by first generating an object distribution over the map with a
specified density, then spawning the player near objects within a certain distance from the
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Figure 2: (left 4 images) in-distribution Clipping examples from GM-4 set. (Right image) 46 Out-of-
distribution objects added in GM-50.

center of the object to sample varied clipping and normal samples. This capability allows
us to scale data generation significantly however we seek to push the boundaries of label
efficiency treating Giantmap as our target title. How far can we push in-distribution perfor-
mance and how does it fare in OOD scenarios? To this effect, we constrain training data to 15
total samples for GM4-tiny dataset and 156 samples for GM4-base dataset whilst generating
3k validation and test in-distribution sets. Moreover, we generate a low-prevalence (0.007)
video deployment set on GM50 (4 ID + 46 OOD objects) to evaluate our methods, in effort to
mimic what a developer might collect from automated or human play testing. Additionally
we gather separate human gameplay on GM50 to use with the small amount of labeled data
generated. In summary, we are given a small amount of i.i.d screenshot in-distribution data,
Unlabeled OOD video, and are expected to evaluate on an OOD, low-prevalence video.

2.2 Method
Our method can be viewed as a self-supervised objective scaled through weak-supervision.
As shown generally in fig.1, it consists of 3 main stages, and is described in more detail
below. We use the first-person player clipping task to show the efficacy of the approach as it
is a challenging visual bug.

Segmentation Stage: Given unlabeled gameplay video of a target video game, we apply
a pre-trained, promptable segmentation model SAM [20] to extract masks in an automated
manner. SAM takes as input an image and one or more geometric prompts. In absence of any
prompt, points are placed uniformly across the image which represents the automatic/zero-
shot segmentation prompt. Priors can be injected into the prompt to guide SAM to ignore or
further sample certain regions of the input frame.

Filtering Stage: Since the environment is an outdoor park set in the spring, certain
semantic visual features are abundant, eg. trees, walking trails, or grass. We develop a filter-
ing & deduplication step using CLIP [29], a text-image model to extract embeddings of each
masked region. For autonomous filtering, we first cluster embeddings using Hierarchical Ag-
glomerative Clustering (HAC) [19, 28], then re-sample masks from each cluster aiming to
balance the mask distribution. For interactive filtering, a user may apply prior knowledge to
select for or against certain masks via a text prompt, after which we perform clustering. The
text prompts are embedded using the CLIP text encoder and cosine distances are computed
with each mask embedding. Text-prompting capability can autonomously incorporate prior
knowledge; for instance, if prior knowledge indicates that foliage, trees, and grass aren’t
relevant, text-prompts around these semantics can be cached and applied as pre-processing
prior to unsupervised clustering. The final set of masks represents the set of semantics on
the playthrough/game-level expected to be observed in a scene, intrinsically making them
good candidates for visual bug augmentation. Moreover, the policy under which the data is
collected also contributes to the mask distribution; we make an explicit assumption that the
semantics of a target game are captured in the unsupervised playthroughs.

Augmentation Stage: Masks along with target images are used to create a self-supervised
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Figure 3: Our method from fig.1 instantiated w.r.t. first-person player clipping. From an unlabeled
video, 5 target frames (2 shown) are labeled and processed by SAM (in dark blue) with geometric
prompts. Source geometric prompts guide SAM to disregard the ’prior region’ (i.e. weapon region),
while target prompts emphasize only that region. After filtering, source masks, along with with target
masks and target images, proceed to the augmentation phase. Here, positives are created by over-
laying the source mask over the target image’s weapon area, while negatives are positioned behind
the weapon, respecting the target weapon mask. Classifying positives vs negatives serve as our self-
supervised objective for FPPC.

objective through domain-specific augmentation. Target images can be obtained from a small
labeled set, or directly from the source unlabeled data. As the masks represent semantics of
the targ et game we utilize them to create augmented positive examples denoting bugs and
negative examples denoting "normal" or "no-bug". If variants of a particular bug exist (e.g.,
stretched vs low-res texture), multiple classes can be augmented. As the method is tailored
to the downstream task, in certain scenarios, the source and target image can be identical.
Our method is flexible and can be applied across a variety of visual bug types.

First-person Weapon Clipping approach: We instantiate our general method for First-
Person (or egocentric) player clipping (FPPC), fig. 3. During segmentation prompting we
prefer to ignore the bottom-right corner of the image typically where the weapon is placed;
thus preventing saturating detected masks with weapon masks. From the unsupervised game-
play video, first the video was down-sampled temporally as videos naturally have visual in-
formation redundancy among adjacent frames. Semantic redundancy however is useful as
the same object viewed from a different view increases both the probability of acquiring a
good mask, as well as instance diversity. From said subsample, two further sets are sam-
pled, 300 frames to build a tiny dataset of 217 masks, and 20k frames to build a larger set of
17k masks. The filtering step is unchanged from fig. 1. For our specific setting, we elect to
paste the mask over the weapon in a given target image. This creates a "peudo-clipping", or
"weapon obstruction" signal which we hypothesize is correlated with our target downstream
clipping task. Conversely, the mask is copied under the weapon (respecting the weapon’s
mask) to create a negative sample. In order to achieve this, we require labeled-good images
as targets. We label 5 random frames from the human gameplay video and use them as target
images. Each target image is paired with each mask for 2 rounds of augmentation (pseudo-
clip vs no-clip). During the augmentation, the source mask can be further augmented before
it is pasted onto the target images. We apply random rotation and random horizontal flip aug-
mentations. Post augmentation the tiny mask set generates 2.2k total samples, while large
generates 170k; which are used to pre-train, multi-task and few-shot on our target task.
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Model Architecture Pretrain Method Prior Accuracy

ResNet-50 In1k sup Crop 0.811 ± 0.06
ResNet-50 In1k sup A1 Crop 0.796 ± 0.03
ResNet-18 In1k sup Crop 0.753 ± 0.04
vit-base-16 In1k sup Crop 0.913 ± 0.03
vit-base-16 CLIP Crop 0.949 ± 0.03
vit-base-16 DINO v1 Crop 0.952 ± 0.03
vit-base-16 In1k sup Crop 0.825 ± 0.03

ResNet-50 In1k sup - 0.733 ± 0.05
vit-base-16 DINOv1 - 0.824 ± 0.05
vit-base-16 CLIP - 0.675 ± 0.02
vit-base-16 In1k sup - 0.738 ± 0.02

Table 1: In-distribution test performance for
training on GM4-Tiny Dataset (15 total samples).
Results over 3 trials.

Model Architecture Pretrain Method Prior Accuracy

ResNet-50 In1k sup Crop 0.958
vit-base-16 In1k sup Crop 0.9657
vit-base-16 CLIP Crop 0.979
vit-base-16 DINOv1 Crop 0.976
vit-base-16 In1k sup Crop 0.9148
ResNet-50 DINOv1 Crop 0.9664

ResNet-50 In1k sup - 0.922
vit-base-16 DINOv1 - 0.967
vit-base-16 CLIP - 0.89
vit-base-16 In1k sup - 0.961

Table 2: In-distribution test performance for
training on GM5-base Dataset, 156 total samples.
±0.02 over 3 trials.

3 Experiments & Results
In-Distribution performance on GiantMap-4: We report the in-distribution balanced test
accuracy of the various architectures evaluated in tab. 1, 2. We evaluate ResNet [16] variants
and Vision Transformer (ViT) [12]. Within each architecture we further evaluate various pre-
training methodology including supervised, weakly-supervised and self-supervised learning
methods. Specifically, IN1k [11] supervised pre-training using the traditional [16] and A1
ResNet training recipe from [37, 38], DINOv1 [7] self-supervised pretext task (for both
ResNet and ViT) as well as weakly-supervised CLIP’s [29] ViT based image-encoder. We
use a few-shot fine tuning approach given recent results indicating its superiority when train-
ing in these regimes [9, 35]. Moreover, we evaluate using a crop prior compared with the
full frame. Specifically regarding FPPC, given it mainly manifests with the weapon, we can
ignore the other parts of the frame. Naturally, the prior is significantly more data efficient,
see tab. 1. In parallel, treating the problem as an object detection problem was also explored
however the crop prior approach shows greater data efficiency given no regression of bbox
coordinates is required. Our results show 1. few-shot fine tuning can be efficient and 2.
when pre-trained, Vision transformers seem to outperform traditional CNNs in low-labeled
settings, similar to observations in other visual domains [25, 31, 42]. Moreover, we observe
that self-supervised pretraining (DINOv1) is competitive or slightly surpasses supervised
pretraining when transfer learning to our task. i.e., DINO is able to extract relevant features
that transfer well into the low-data regime, tab. 2. Given our strong baseline for balanced
low-labeled in-distribution performance, we select ViT pretrained on DINO as our backbone
for all future experiments where we will evaluate in a challenging out of distribution (OOD),
low-prevalence setting observed in practice. In this imbalanced setting, we use F1 score
(harmonic mean of precision and recall) as our primary metric.

3.1 Weak Supervision
Given the supervised fine-tuning (SFT) performance on our low-prevalence deployment
tabs. 3, 5 we seek to improve it by applying our method from section 2.2.

Mask Filtering: To analyze the masks produced by SAM [20], we sample 30k frames
from an unlabeled human gameplay video from GM50, generate masks using SAM and
label them. Our labeling scheme was a combination of GM50 Objects of Interest (OOI)
along with other general semantic categories. As observed in fig. 4a, firestand, pathway,
ground, and trees dominate the distribution. The latter two are omnipresent in scenes and
the former, due to the data gathering policy. This creates redundancy in the signal we inject
via augmentation. To combat this, we use CLIP [29] to extract embeddings and HAC [19]
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(k = 50) with cosine distance to cluster masks in an unsupervised manner, k was selected
naively with a priori knowledge of 50 OOI on the map. Realistically k > 50 as other non-
OOI are contribute to visual semantics of GM50. We observe that resampling after using
either the heuristic fig. 4b to select k or overclustering fig. 4c (k = 100) somewhat ameliorates
class imbalance. See fig. 5 for qualitative examples of our clusters. Interestingly, clusters
capture multiple views of both OOI fig. 5 and also other map objects fig. 5d, the food stand
is not an OOI yet it is captured, a promising sign for OOD generalization. Further, we
observe that objects with overlapping visual semantics, especially fine-grained ones such
as variants of statues fig. 5b, tend to cluster together. We explore explicit removal of non-
relevant yet highly frequent masks such as sky, trees, pathways, in hopes to further increase
signal in our augmented dataset. As we are already using CLIP image-encoder to extract
visual features, we can pair with text encoder embeddings that may be supplied interactively
or stored as a priori knowledge. eg. Clipping with grass and foliage is near universally a non-
issue. We filter via stored text prompts tailored towards pathways, trees, etc. resulting in a
distribution fig. 4d. While the non-relevant masks have been filtered, overall class balance
has gotten worse. By removing omnipresent non-relevant classes ( ∼50% of the masks), any
remaining over-represented classes (fire stand) overwhelm the distribution. We rebalance
by performing clustering and resampling post text filtering. There exist other interesting
approaches not explored, eg. clustering followed by interactive labeling to prune away entire
clusters.

(a) (b)

(c) (d)
Figure 4: Mask label frequencies. (a) ground truth (b) 50 re-sampled from k=50 clusters, (c) 50
samples re-sampled from k=100 clusters, (d) text prompt based filtering on semantic categories trees,
foliage, roads, sky

Self-supervision: Pre-training vs multi-task: Given two mask sets, Tiny (217 masks)
and Large (17k masks), we create multiple datasets to serve the self-supervised objective.
The first TinyAug and LargeAug consist of paired data with limited rotation augmentation
of the individual masks. The second HeavyTiny and HeavyLarge consist of heavy rotations
to influence diversity. We pair these objectives with labeled GM4-tiny and GM4-base in a
sequential pre-training or simultaneous multi-task training setting. The multi-task objective
is a weighted combination L = λLw +(1−λ )Lt where Lw denotes our SSL objective, Lt is
the target objective. We evaluate our models in the low-prevalence OOD setting on GM50
across 3 settings, each denoting some amount of "real" labeled data available during training.
1. only a few (5) labeled "good" exemplars and 0 positives (i.e., 0 real bugs samples) trained
with weak supervision only tab. 4, 2. tiny amount of labeled data is available (15 examples
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(a) (b) (c) (d)

Figure 5: Mask clustering(k=50): (a) multiple views of objects are captured, (b) certain fine-grained
objects tend to cluster together, (c) the sky, an "object" not relevant to our visual bug, (d) map object.

Dataset Train Method F1

Supervised GM4-tiny SFT 0.153
TinyAug + GM4-tiny Pretrain + SFT 0.479
LargeAug + GM4-tiny Pretrain + SFT 0.397
TinyAug + GM4-tiny multi-task 0.484
LargeAug + GM4-tiny multi-task 0.484

Table 3: Low-prevalence, OOD deployment F1
results on GM50. GM4-tiny training dataset
(15 labeled examples). LargeAug=17k masks,
TinyAug=217 masks.

Dataset F1

LargeAug-Raw 0.054
LargeAug 0.429
TinyAug-Raw 0.296
TinyHeavyAug-Raw 0.480
TinyAug 0.529
TinyHeavyAug 0.493

Table 4: Low-prevalence, OOD deployment F1
scores on GM50 in few-shot setting (ie. self-
supervised objective only. 5 labeled negative ex-
amples, 0 positive examples). LargeAug=17k
Masks, TinyAug=217 masks. Raw suffix denotes
unfiltered.

total) tab. 3, and 3. small amount of labeled data is available (156 samples total), tab. 5. Our
results indicate that our self-supervision alone absent any positive (bugs) examples is suffi-
cient to surpass the best fully supervised training in the low-labeled, low-prevalence regime,
0.529 vs 0.336 F1. Further fine-tuning on a small amount of labeled data tab. 5 enhances
performance to 0.550. Overall both pre-training and multi-task are competitive with one an-
other, however pre-training edges out. In addition, we observe that pre-training was simpler
to optimize, as the loss weight (λ ) is a sensitive hyperparameter. LargeAug, created from
thousands of masks produces worse results overall than Tiny which has 217 masks. This
is likely due to the aforementioned distribution imbalance in the masks producing informa-
tion redundant samples, further exacerbated by scale. Similarly, for raw unfiltered masks,
results indicate rebalancing and filtering as a progressive step; however with the right mask
augmentations, sufficient diversity is introduced to make it competitive.

Dataset Train Method F1

Supervised GM4 SFT 0.336
LargeAug + GM4 multi-task 0.419
TinyHeavyAug + GM4 multi-task 0.516
TinyHeavyAug-raw + GM4 multi-task 0.510
LargeAug + GM4 multi-task 0.533
TinyHeavyAug + GM4 Pretrain+SFT 0.492
TinyAug + GM4 Pretrain+SFT 0.550

Table 5: Low-prevalence, OOD deployment F1 results on GM-50. GM4-base training dataset (175
total labeled examples). Multi-task and pre-training on the self-supervised objective greatly increases
performance over baseline 0.336 F1 score obtained from SFT. TinyAug = small mask set. Raw suffix
= unfiltered.
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4 Discussion, Limitations and Future work
Our method, which utilizes weak-supervision to scale up a self-supervised objective im-
proves performance both through multi-task and pre-training. It consistently demonstrates
superior performance compared to solely using a supervised low-labeled dataset. Our self-
supervision however is domain-crafted in contrast with advances in recent general, less bi-
ased approaches [3, 7, 18, 26]; we only make use of unlabeled data as a means to obtain
representative object centric masks. Additional information exists in unsupervised videos to
be captured through general self-supervised objectives, for instance we can use rebalanced
masks with DINO [7, 26] to adapt the backbone. Our GM environment has shared, yet
inverted objectives to PUG [6]; [6] use interactive Unreal environments to serve as simu-
lators to obtain photorealistic data in a controlled manner whereas our target distributions
are the simulators themselves. A limitation of our approach is reliance on the policy under
which data was gathered. The integration of Reinforcement Learning agents, such as [1], is
an intriguing avenue for future research. Additionally, Fig. 5b highlights a challenge: our
filtering approach allows text-prompts to specify preference-based semantics, yet it strug-
gles when these semantics are fine-grained or not well-represented within the embedding.
Thus, the text-image model has difficulty performing in a zero-shot context. Future work
might consider advanced text-image models or exploring strategies that combine text-image
prompting with other learning methods. Additionally, models adapted from SAM [10, 21]
can be applied during segmentation stage to enhance extraction of semantic masks.

The rapid testing cycles and cadence of new content make traditional label-intensive
learning impractical for visual bug detection. Despite game engines increasingly integrat-
ing ML capabilities, relying solely on integration isn’t scalable; our work moves towards
techniques not reliant on source code access. Further, new game content can be viewed as
OOD data and we have taken steps towards methods that are robust and generalize to such
scenarios, specifically objects. Future work may explore the scalability and generality of our
methodology across various visual bug-types and OOD settings. What data requirements
exist for domain adaptation to art styles (eg. non-photorealistic games), environments, light-
ing? Moreover, constraining ourselves to RGB-only for practical reasons fails to exploit the
richness of multimodality, limiting the depth of visual cues our models may capture. Multi-
modal data can be used during training and constrained or estimated at test time, maintain-
ing practicality. Further, our augmentation strategy uses traditional CV techniques, however
other synthetic or generative methods may also be an interesting line of future work.

5 Conclusion
Visual bug detection poses unique challenges due to rapidly evolving content, constraints in
labeled data availability, and generalization to out-of-distribution scenarios. In this study,
we explored a weakly-supervised, three-staged approach to address these challenges, specif-
ically targeting first-person player clipping (FPPC) within Giantmap. Our findings harness
the potential of large-pretrained visual models to enhance our training data. Our approach
allows for the injection of priors through prompting, both geometric and text-based. A sig-
nificant advantage of promptable filtering is its simplicity, making it accessible for non-ML
professionals, allowing them to integrate their expert knowledge into the self-supervised
objective. Additionally, our framework shows promise in generating expansive, curated
datasets within video games, with the potential to foster both, comprehensive understand-
ing of video game scenes and developing visual bug detection models.
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